Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Geochem Health ; 41(5): 2081-2091, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30838487

RESUMEN

This study evaluated the feasibility of combining potassium chloride (KCl) leaching and electrokinetic (EK) treatment for the remediation of cadmium (Cd) and other metals from contaminated soils. KCl leaching was compared at three concentrations (0.2%, 0.5%, and 1% KCl). EK treatment was conducted separately to migrate the metals in the topsoil to the subsoil. The combined approach using KCl leaching before or after EK treatment was compared. For the single vertical EK treatment, the removal of Cd, lead (Pb), copper (Cu) and zinc (Zn) from the topsoil (0-20 cm) was 9.38%, 4.80%, 0.95%, and 10.81%, respectively. KCl leaching at 1% KCl removed 84.06% Cd, 9.95% Pb, 4.34% Cu, and 19.93% Zn from the topsoil, with higher removal efficiency than that of the 0.2% and 0.5% KCl leaching treatments. By combining the KCl leaching and EK treatment, the removal efficiency of heavy metals improved, in particular for the 1% KCl + EK treatment, where the removal rate of Cd, Pb, Cu, and Zn from the upper surface soil reached 97.79%, 17.69%, 14.37%, and 41.96%, respectively. Correspondingly, the soil Cd content decreased from 4 to 0.21 mg/kg, and was below the Chinese standard limit of 0.3 mg/kg soil. These results indicate that 1% KCl + EK treatment is a good combination technique to mitigate Cd pollution from contaminated soils used for growing rice and leafy vegetables.


Asunto(s)
Cadmio/aislamiento & purificación , Restauración y Remediación Ambiental/métodos , Cloruro de Potasio/química , Contaminantes del Suelo/aislamiento & purificación , Cadmio/análisis , Cadmio/química , Técnicas Electroquímicas , Contaminación Ambiental/prevención & control , Metales Pesados/análisis , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química
2.
Environ Technol ; 34(13-16): 2221-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350476

RESUMEN

Land application of sewage sludge usually leads to increased levels of heavy metals in soil, plants and groundwater. Pre-treatment using plants has been proposed to reduce the contents of heavy metals and water in sludge prior to land application. This study quantified the transfer of Zn, Cd, Pb and major nutrients in a sludge-soil-plant-leachate system during the treatment of sewage sludge. To accomplish this, a two year pot experiment was carried out to collect leachate, mono- and co-cropping of Sedum alfredii and feed crops was conducted in sludge with an under-layer soil support. Sludge phyto-treatment increased Zn and Cd concentrations in the under-layer soil, but not Pb. Specifically, 70%, 70% and 80% of the original Zn, Cd and Pb, respectively, remained in the sludge, while about 40%, 70% and 60% of the original N, P and K remained. Only 3% to 5% of Cd and Zn and < 1% of Pb were transferred into the under-layer soils or leachates, while more than 12% of the N and P were transferred. Co-planting S. alfredii and feed crops led to a significant reduction of heavy metals in leachates when compared with sludge without planting. Overall, sludge leachate is more appropriate than whole sludge for recycling in agriculture since it reduces the chance of heavy metal contamination in the agro-ecosystem; therefore, co-cropping phytotreatment of sludge can be coupled with sludge leachate recycling for crop production and re-collection of the sludge residue for landfilling.


Asunto(s)
Biodegradación Ambiental , Metales Pesados/análisis , Plantas/química , Plantas/metabolismo , Aguas del Alcantarillado , Contaminantes del Suelo/análisis , Alocasia/química , Alocasia/metabolismo , Biomasa , Metales Pesados/metabolismo , Sedum/química , Sedum/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Zea mays/química , Zea mays/metabolismo
3.
Sci Total Environ ; 868: 161592, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36646214

RESUMEN

The Cd, Cu, Pb, and Zn removal efficiencies achieved by flushing with FeCl3 were determined in a field experiment using soil contaminated with multiple metals. Soil was first flushed with FeCl3 and then with FeCl3 or a mixture of chelators. Flushed soil was amended with lime and organic matter to revitalize the soil, then the soil was used to grow Zea mays and Brassica juncea. The heavy metal concentrations in groundwater were determined to assess the risks of leaching caused by soil flushing. The Cd, Cu, Pb, and Zn removal efficiencies were 70%, 40%, 33%, and 17%, respectively, when FeCl3 (25 mmol (kg topsoil)-1) was applied. The second washing generally did not significantly decrease the heavy metal contents of the soil but the second FeCl3 washing did decrease the Pb content. Pb leached from topsoil was partly retained by the subsoil 20-40 cm deep. The Zea mays yields were significantly lower but the Brassica juncea yields were significantly higher after the combined soil flushing and amendment treatment than after only the amendment treatment. This indicated that soil flushing only negatively affected growth of deep-rooted Z. mays. The Cd, Cu, Pb, and Zn concentrations in Z. mays grains and the edible parts of B. juncea grown in remediated soil were below the Chinese tolerable limits for contaminants in food. Washing with FeCl3 did not increase groundwater contamination during the study. The results indicated that flushing soil with FeCl3 and subsequent amendments is a technically feasible method for remediating agricultural soil contaminated with Cd.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio , Plomo , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
4.
Huan Jing Ke Xue ; 44(3): 1668-1677, 2023 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-36922227

RESUMEN

In this study, chemical leaching and electrokinetic technology were used to remediate heavy metal contaminated soil to elucidate its effectiveness and mechanisms. Chemical leaching agents of FeCl3, Fe(NO3)3, KCl, KNO3, and HCl solutions were selected, and the effects of Fe3+, K+, H+, and Cl- on four heavy metal (Cd, Pb, Cu, and Zn) removals were compared and analyzed. Then, the influence of the speciation of heavy metals in soil after chemical leaching on the electrokinetic remediation efficiency was studied. The results showed that Fe3+, K+, H+, and Cl- had different effects on the four heavy metal removals; for Cd and Zn, the removal effect of H+was the most effective, but for Pb and Cu, the effect of Fe3+ was the most obvious. On the whole, FeCl3 and Fe(NO3)3 showed the best removal effect for Cd, Pb, and Cu. For the removal of Zn from the soil, the difference in the removal effect of the five leaching agents was not obvious. In comparison with that of FeCl3 and Fe(NO3)3, the HCl solution had a moderate removal effect on the four heavy metals in the soil, and the neutral salts KCl and KNO3 had little removal effect on the four heavy metals. Especially for Cd and Cu, KCl and KNO3 addition significantly increased the removal of heavy metals through the subsequent electrokinetic remediation. After the chemical leaching, electrokinetic remediation could make heavy metals in the topsoil (0-10 cm) migrate downward and enrich the 10-20 cm and 20-30 cm soil layers, which requires further studies to resolve.

5.
Plants (Basel) ; 12(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375945

RESUMEN

This study was conducted to identify soil cadmium (Cd) removal pathways and their contribution rates during phytoremediation by Pennisetum hybridum, as well as to comprehensively assess its phytoremediation potential. Multilayered soil column tests and farmland-simulating lysimeter tests were conducted to investigate the Cd phytoextraction and migration patterns in topsoil and subsoil simultaneously. The aboveground annual yield of P. hybridum grown in the lysimeter was 206 ton·ha-1. The total amount of Cd extracted in P. hybridum shoots was 234 g·ha-1, which was similar to that of other typical Cd-hyperaccumulating plants such as Sedum alfredii. After the test, the topsoil Cd removal rate was 21.50-35.81%, whereas the extraction efficiency in P. hybridum shoots was only 4.17-8.53%. These findings indicate that extraction by plant shoots is not the most important contributor to the decrease of Cd in the topsoil. The proportion of Cd retained by the root cell wall was approximately 50% of the total Cd in the root. Based on column test results, P. hybridum treatment led to a significant decrease in soil pH and considerably enhanced Cd migration to subsoil and groundwater. P. hybridum decreases Cd in the topsoil through multiple pathways and provides a relatively ideal material for phytoremediation of Cd-contaminated acid soils.

6.
J Hazard Mater ; 424(Pt A): 127296, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34592593

RESUMEN

In order to produce safe rice from cadmium (Cd) contaminated soils, a special pot experiment in the field was proposed to facilitate the study of multiple remediation measures. In the field experiments, four treatments were selected for the first half of the year: rice without soil treatment (R); rice with zeolite stabilization (RZ); oilseed rape phytoremediation (OR); and inter-cropping Sedum alfredii and maize phytoremediation (IC). As the early rice with zeolite stabilization still contained elevated Cd, manganese (Mn) fertilizer was added in the late rice with a special pot experiment in the field. Results showed that, in the first crops, the grains of maize and oilseed rape contained Cd below the food standard limit, while Cd in rice grain exceeded the limit of 0.2 mg/kg. The RZ treatment did not reduce Cd in rice but decreased significantly Mn in rice straw. In the late rice, Mn fertilizer additionally reduced Cd in rice grain to 0.12 mg/kg in combination with the RZ treatment. Mn accumulation in rice straw was enhanced by Mn fertilizer. These results indicate that the pot experiment in the field provides a useful tool to further evaluate effective treatment combinations to reduce Cd in rice.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Cadmio/toxicidad , Manganeso , Suelo , Contaminantes del Suelo/análisis
7.
Chemosphere ; 259: 127441, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32593826

RESUMEN

In this study, a porous reduced graphene oxide (PRGO) carbon nanomaterial was successfully obtained by activation of natural graphite with KOH at high temperature and was applied as an auxiliary electrode in soil electrokinetic remediation to investigate the promoting effect on Cd migration. We found that PRGO contained a large amount of oxygen-containing groups (hydroxyl and carboxyl groups) and exhibited high Cd2+ adsorption efficiency at pH values above 4, achieving a maximum adsorption capacity of 434.78 mg/g for Cd. In addition, PRGO could selectively adsorb Cd, Pb, Cu, and Zn but not K, Na, or Mg from soil solution. The electrokinetic remediation experiment showed that the PRGO auxiliary electrode promoted the migration of Cd and effectively controlled the increase in soil pH near the cathode, possibly due to ion exchange between the surface functional groups on the auxiliary electrode and Cd2+. In addition, the location of the PRGO auxiliary electrode strongly influenced the migration of Cd. For instance, the soil Cd concentration of treatment H-5 was 57.86% lower than that of H-0 at a distance of 5-10 cm from the electrode; however, the soil Cd concentration measured at 0-5 cm for treatment H-5 was 34.84% higher than that of treatment H-0. Our study demonstrated that PRGO could be applied as an auxiliary electrode to promote Cd migration during electrokinetic remediation of Cd-contaminated soil.


Asunto(s)
Cadmio/química , Restauración y Remediación Ambiental , Grafito/química , Adsorción , Cadmio/análisis , Electrodos , Contaminación Ambiental , Concentración de Iones de Hidrógeno , Porosidad , Suelo/química , Contaminantes del Suelo/análisis
8.
Water Environ Res ; 92(6): 840-849, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31730245

RESUMEN

This paper investigated the effect mechanism of complex components (fulvic acid [FA], sodium dodecylbenzene sulfonate [SDBS], and sodium nitrate [NaNO3 ]) on the aggregation kinetics of polyvinylpyrrolidone-modified silver nanoparticles (PVP-AgNPs) under UV irradiation. The results showed that FA and NaNO3 alone did not cause aggregation due to the high steric hindrance and/or electrostatic repulsive forces. In high concentration of SDBS solution (20-50 mM), the stability of PVP-AgNPs was reduced by adsorbing SDBS on nanoparticle surface and replacing their PVP coatings. A mixed system of two pollutants had a synergistic effect on PVP-AgNPs aggregation. In the mixed system of SDBS and FA, the interaction of SDBS and PVP-AgNPs dominated the aggregation of PVP-AgNPs. NaNO3 significantly improved the aggregation rate of PVP-AgNPs in SDBS solution due to the charge neutralization effect of electrolyte. In 20 mg/L FA solution, the aggregation rate increased slightly with increasing NaNO3 concentration from 50 to 200 mM due to the charge neutralization effect, while the hydrodynamic diameters of PVP-AgNPs increased linearly and rapidly to micrometer size because the spatial conformation of adsorbed FA became compact in high-salinity solution. The calculation results of eDLVO theory were basically consistent with most of the experimental results. PRACTITIONER POINTS: PVP-AgNPs was uniformly dispersed in NaNO3 or FA solution under UV irradiation. PVP-AgNPs formed aggregates in SDBS solutions under UV irradiation. A system with two mixed pollutants had a synergistic effect on promoting aggregation of PVP-AgNPs. eDLVO theory could explain the aggregation results in different chemical conditions except in NaNO3 solution.


Asunto(s)
Nanopartículas del Metal , Plata , Cinética , Povidona , Rayos Ultravioleta
9.
Arch Environ Contam Toxicol ; 56(2): 181-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18491175

RESUMEN

This study investigated the occurrence of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) in 11 vegetable species collected from nine farms of the Pearl River Delta, South China. Twelve PAH compounds and all PAE compounds were detected by gas chromatography coupled with mass spectrometry (GC-MS) in vegetables. The total concentrations of PAHs (Sigma(PAHs)) and PAEs (Sigma(PAEs)) ranged from 7.0 to 5353 microg kg(-1) dry weight (d.w.), with a mean value of 1173 microg kg(-1) d.w., and from 0.073 to 11.2 mg kg(-1) d.w., with a mean value of 3.2 mg kg(-1) (d.w.), respectively. The highest levels of Sigma(PAHs) and Sigma(PAEs) were found in Brassica juncea and Brassica parachinensis, respectively. For the same vegetable, the bioconcentration factors (BCFs; the ratio of contaminant concentration in plant tissue to the soil concentration) of PAHs (between 0.0037 and 5.5) are generally higher than those of PAEs (between <0.0001 and 0.61). It was also noted that there were great variations of organic contaminant levels, BCFs, and benzo[a]pyrene equivalent concentrations, which depend on the various contaminants, sampling locations, and vegetable species. The occurrences of PAHs and PAEs in this study are compared with those in other studies and their sources are discussed.


Asunto(s)
Ácidos Ftálicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Verduras/química , Agricultura , China , Monitoreo del Ambiente , Ésteres , Contaminación de Alimentos/análisis , Cromatografía de Gases y Espectrometría de Masas , Ríos , Verduras/crecimiento & desarrollo
10.
Bioresour Technol ; 99(6): 1830-6, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17502135

RESUMEN

We studied the accumulation of polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in a latosolic red soil and radish (Raphanus sativus) with application of sewage sludge at rates of 10, 20 and 40 g kg(-1) soil or compost at rate of 10 g kg(-1) soil. In radish the concentrations of individual PAHs and PAEs varied from non-detectable to 803 microg kg(-1) dry weight (d.w.) and from non-detectable to 2048 microg kg(-1) d.w., respectively. Compared to the control, higher application rates of sewage sludge resulted in pronounced increases in shoot, root and soil concentrations of PAHs and PAEs. PAE concentrations in radish grown in soil spiked with sludge compost were higher while the PAH concentrations were comparable to those receiving 10 g kg(-1) of sewage sludge. However, the root biomass of radish in soil amended with compost was significantly higher and the shoot-to-root ratio was significantly lower than in the other treatments. The bioconcentration factors (BCFs, the ratio of contaminant concentration in plant tissue to the soil concentration) of di-n-butyl phthalate and di(2-ethylhexyl) phthalate in both shoots and roots and of total PAH concentrations in roots were less than 1.0, but some BCFs for individual PAHs were high with a maximum value of 80.


Asunto(s)
Biotecnología/métodos , Ésteres/química , Ácidos Ftálicos/química , Hidrocarburos Policíclicos Aromáticos/química , Aguas del Alcantarillado , Contaminantes del Suelo/análisis , Suelo , Biomasa , Carbono/química , Cromatografía de Gases/métodos , Restauración y Remediación Ambiental , Fertilizantes , Espectrometría de Masas/métodos , Modelos Estadísticos , Raphanus
11.
Sci Total Environ ; 389(2-3): 209-24, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-17936334

RESUMEN

This paper summarizes the published scientific data on the soil contamination by semivolatile organic chemicals (SVOCs) in China. Data has been found for more than 150 organic compounds which were grouped into six classes, namely, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and phthalic acid esters (PAEs). An overview of data collected from the literature is presented in this paper. The Chinese regulation and/or other maximum acceptable values for SVOCs were used for the characterization of soils. In general, the compounds that are mostly studied in Chinese soils are OCPs, PAHs and PCBs. According to the studies reviewed here, the most abundant compounds were PAEs and PAHs (up to 46 and 28 mg kg(-1) dry weight, respectively); PCBs and OCPs occurred generally at concentrations lower than 100 microg kg(-1) dry weight. Nevertheless, quite high concentrations of PCDD/Fs, PCBs and PBDEs were observed in contaminated sites (e.g., the sites affected by electronic waste activities). The average concentrations of PAHs and OCPs in soils of North China were higher than those in South China. The principal component analysis demonstrated different distribution patterns for PAH, PCB and PCDD/F congeners and for the various sites/regions examined. The isomer ratios of DDTs and hexachlorocyclohexanes (HCHs) indicated different sources and residue levels in soils. Finally, this review has highlighted several areas where further research is considered necessary.


Asunto(s)
Compuestos Orgánicos/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , China , Monitoreo del Ambiente , Compuestos Orgánicos/química , Suelo/normas , Contaminantes del Suelo/química , Volatilización
12.
J Chromatogr A ; 1143(1-2): 207-14, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17227677

RESUMEN

In order to investigate the occurrence and distribution of organic contaminants in the compost of sewage sludge with rice straw, four different composting treatments at a low carbon/nitrogen (C/N) ratio (13:1) were conducted. Thirty semi-volatile organic compounds (SVOCs) listed as priority pollutants by both China and the US Environmental Protection Agency (EPA) were Soxhlet-extracted, separated and analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The results showed that after composting (56 days) most of SVOCs were detected in the final composts. The total concentrations of polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters ranged from 1.8 to 10 mg/kg dry weight (d.w.) and from 9.8 to 18 mg/kg d.w., respectively, being significantly higher than those of chlorobenzenes and nitroaromatic compounds which were generally less than 1.0 mg/kg d.w. The concentrations and predominant compounds of organic contaminants in the different composts varied, and were affected by their physico-chemical properties and the composting processes. Concentrations of SVOCs in the static aerated composting processes especially intermittently aerated composting treatment were considerably lower than those in the manual-turned composting treatments. Concentrations of organic contaminants especially PAHs and di(2-ethylhexyl) phthalate in the final composts were in agreement with the maximum permissible limits for agricultural purposes proposed by the European Union and by the EPA.


Asunto(s)
Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Oryza , Aguas del Alcantarillado/química , Clorobencenos/análisis , Ácidos Ftálicos/análisis , Compuestos Policíclicos/análisis
13.
Chemosphere ; 68(10): 1954-60, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17449086

RESUMEN

The use of sewage sludge as a fertilizer and soil amendment has resulted in high concentrations of heavy metals in the soil limiting its use. The present study was carried out to find the possibility of phyto-separating toxic and beneficial elements from the sludge using suitable plants. Of the five plants tested the hyperaccumulator Sedum alfredii H achieved the greatest removal of Zn, while shoots of Alocasia marorrhiza accumulated high content of K. Co-cropping these two plants on the sludge verified the previous observations on A. marorrhiza and the shoots of this plant could accumulate more than 120 g K kg(-1) dry matter in the median growth stage. Zn hyperaccumulated in Sedum's shoots to an extent more than 10 g kg(-1) dry matter; K concentrated five to ten times in the Alocasia's shoots which could be used as a good organic-K-fertilizer. Hence, the two elements were simultaneously phytoseparated and could be recycled. Furthermore, cultivation of plants in the sludge resulted in significant decreases in total Zn but kept the favorable agronomic characteristics of the sludge material, such as pH, organic matter content, and NPK concentrations and ameliorated its biological stability. These results suggest that simultaneous phyto-separation of toxic and beneficial elements from sewage sludge are possible by co-cropping using specific plants without the input of any chemicals.


Asunto(s)
Alocasia/metabolismo , Potasio/metabolismo , Sedum/metabolismo , Aguas del Alcantarillado/química , Zinc/metabolismo , Biodegradación Ambiental , Chrysopogon/metabolismo , Brotes de la Planta/química , Brotes de la Planta/metabolismo , Potasio/química , Thlaspi/metabolismo , Zea mays/metabolismo , Zinc/química
14.
Chemosphere ; 68(9): 1751-62, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17509650

RESUMEN

This study presents the occurrence of 43 semi-volatile organic compounds (SVOCs) listed as priority pollutants by both China and the United States Environmental Protection Agency, in sewage sludges collected from eleven wastewater treatment plants (WWTPs) of mainland and Hong Kong, China. Thirty-six SVOCs were detected by gas chromatography coupled with mass spectrometer (GC-MS) and at least 14 in each sample. The most abundant compounds were phthalic acid esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) with total concentrations ranging from 10 to 114mgkg(-1) dry weight (d.w.) (with a mean of 30mgkg(-1) d.w.) and from 1.4 to 33mgkg(-1)d.w. (with a mean of 16mgkg(-1) d.w.), respectively, followed by chlorobenzenes, nitroaromatics, haloethers and halogenated hydrocarbons which occurred generally at concentrations lower than 10mgkg(-1) d.w. Large variations were observed between the concentrations of individual compounds as well as their total concentrations in sludge samples from different WWTPs. The highest values of sum concentration of 16 PAHs and of 6 PAEs were found in sewage sludge from Beijing. The mean total concentration of each class of SVOCs in sewage sludge from mainland was remarkably higher than that from Hong Kong. The concentrations of di(2-ethylhexyl) phthalate in 91% sludge samples met the limit (100mgkg(-1)d.w.) proposed by the Europe Union for land application, whereas the PAH concentrations of 64% sludge samples exceeded the maximum permissible concentration (6.0mgkg(-1)d.w.). The occurrence of SVOCs in this study are compared with other studies and their sources are discussed.


Asunto(s)
Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Aguas del Alcantarillado/química , China , Geografía , Compuestos Orgánicos/química
15.
Chemosphere ; 68(1): 159-68, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17258277

RESUMEN

Surface soil (0-20 cm) samples from nine representative vegetable fields located in Guangzhou, Shenzhen, Zengcheng and Huadu within the Pearl River Delta, South China were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography coupled to mass spectrometry (GC-MS). Total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 160 to 3700 microg kg(-1). Large variations were observed also between concentrations of individual PAHs from different vegetable fields and within the site as well. Acenapthylene, benzo[b]fluoranthene, fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene were consistently the most prevalent individual PAHs. The values of PAH isomer ratios [anthracene/(anthracene+phenanthrene) and fluoranthene/(fluoranthene+pyrene)] indicate that combustion processes are the major sources of PAHs. Concentrations of PAHs were poorly correlated with organic carbon concentrations of soils, suggesting different sources and also indicating that the PAH pollution of this area is recent. The same outcome is confirmed by the predominance of PAHs with fewer rings (

Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Agricultura , China , Cromatografía de Gases y Espectrometría de Masas
16.
J Hazard Mater ; 142(1-2): 535-42, 2007 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-17029776

RESUMEN

The efficiency of four different composting processes to bioremediate polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge was investigated. Prior to composting, sewage sludge coming from the Datansha wastewater treatment plant, Guangzhou, China, was mixed with rice straw to obtain a C/N ratio of 13:1. After 56 days of composting, the total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 1.8 to 10.2 mg kg(-1) dry weight, decreasing in order of inoculated-manual turned compost (IMTC)>manual turned compost (MTC)>continuous aerated compost (CAC)>intermittent aerated compost (IAC), exhibiting removal rates of 64%, 70%, 85% and 94%, respectively. Individual PAHs were generally removed in similar rates. IAC treatment showed a higher removal rate of high molecular weight PAHs and carcinogenic PAHs comparing to the other composting processes.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Compuestos Policíclicos/aislamiento & purificación , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Peso Molecular , Oryza , Control de Calidad
17.
J Hazard Mater ; 147(3): 1063-72, 2007 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-17350165

RESUMEN

This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750mgkg(-1) dry weight (d.w.), respectively. The concentrations increased by 12-60% for Cd, 8-17% for Cu, 15-43% for Pb and 14-44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe-Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability.


Asunto(s)
Metales Pesados/análisis , Aguas del Alcantarillado/química , Suelo/análisis , Metales Pesados/química , Contaminantes Químicos del Agua
18.
J Environ Sci (China) ; 19(7): 827-33, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17966870

RESUMEN

Growing fruit trees on the slopes of rolling hills in South China was causing serious environmental problems because of heavy application of chemical fertilizers and soil erosion. Suitable sources of fertilizers and proper rates of applications were of key importance to both crop yields and environmental protection. In this article, the impact of four fertilizers, i.e., inorganic compound fertilizer, organic compound fertilizer, pig manure compost, and peanut cake (peanut oil pressing residue), on chestnut (Castanea mollissima Blume) growth on a slope in South China, and on the total N and total P concentrations in runoff waters have been investigated during two years of study, with an orthogonal experimental design. Results show that the organic compound fertilizer and peanut cake promote the heights of young chestnut trees compared to the control. In addition, peanut cake increases single-fruit weights and organic compound fertilizer raises single-seed weights. All the fertilizers increased the concentrations of total N and total P in runoff waters, except for organic compound fertilizer, in the first year experiment. The observed mean concentrations of total N varied from 1.6 mg/L to 3.2 mg/L and P from 0.12 mg/L to 0.22 mg/L, which were increased with the amount of fertilizer applications, with no pattern of direct proportion. On the basis of these experiment results, organic compound fertilizer at 2 kg/tree and peanut cake at 1 kg/tree are recommended to maximize chestnut growth and minimize water pollution.


Asunto(s)
Fagaceae/crecimiento & desarrollo , Fertilizantes , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/prevención & control , Animales , Arachis , China , Estiércol , Porcinos , Movimientos del Agua
19.
J Environ Sci (China) ; 18(6): 1113-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17294951

RESUMEN

Chelant-enhanced phytoextraction is one of the most promising technologies to remove heavy metals from soil. The key of the technology is to choose suitable additives in combination with a suitable plant. In the present study, laboratory batch experiment of metal solubilization, cress seeds germination were undertaken to investigate the metal-mobilizing capability and the phytotoxicity of organic additives, including ethylene diamine triacetic acid (EDTA), citric acid, acetic acid, oxalic acid, glutamine and monosodium glutamate waste liquid (MGWL) from food industry. Experiments in pots were carried out to study the effects of the additives on Zn and Cd phytoextraction. Furthermore, a leaching experiment with lysimeter was performed to evaluate the environmental risks of additive-induced leaching to underground water. The results showed that EDTA had a strong mobilizing ability for Zn and Cd, followed by mixed reagent (MR) and MGWL. MGWL and acetic acid at 5 mmol equivalent per liter resulted in seed germination index less than 2%. Experiments in pots verified the phytotoxicity of acetic acid and MGWL. Addition of the mixed reagent at 6-10 mmol/kg significantly increased Zn phytoextraction by Thlaspi caerulescens. The same for EDTA and the mixed reagent at 10 mmol/kg by Sedum alfredii. But only mixed reagents could significantly increase Cd phytoextraction by the studied hyperaccumulators. This suggested that the strong chelant was not always the good agent to enhance phytoextraction. S. alfredii combined with 2-10 mmol/kg soil MR was preferred for phytoremediation of Cd/Zn contaminated soils in southern China, this could result in high phytoextraction of Cd/Zn and reduce the leaching risk to underground water than EDTA assisted phytoextration.


Asunto(s)
Cadmio/metabolismo , Quelantes/metabolismo , Contaminación Ambiental/prevención & control , Sedum/metabolismo , Contaminantes del Suelo/metabolismo , Thlaspi/metabolismo , Zinc/metabolismo , Ácido Acético , Biodegradación Ambiental , Cadmio/farmacocinética , China , Ácido Cítrico , Ácido Edético , Industria de Alimentos , Germinación/efectos de los fármacos , Glutamina , Ácido Oxálico , Sedum/efectos de los fármacos , Glutamato de Sodio , Contaminantes del Suelo/farmacocinética , Thlaspi/efectos de los fármacos , Residuos/análisis , Zinc/farmacocinética
20.
Bioresour Technol ; 217: 252-6, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26897473

RESUMEN

The study was carried out to investigate the use of a high biomass plant, Pennisetum hydridum, to treat municipal sewage sludge (MSS). An experiment composed of plots with four treatments, soil, fresh sludge, soil-sludge mixture and phyto-treated sludge, was conducted. It showed that the plant could not survive directly in fresh MSS when cultivated from stem cuttings. The experiment transplanting the incubated cutting with nurse medium of P. hydridum in soil and fresh MSS, showed that the plants grew normally in fresh MSS. The pilot experiment of P. hydridum and Alocasia macrorrhiza showed that the total yield and nutrient amount of P. hydridum were 9.2 times and 3.6 times more than that of A. macrorrhiza. After plant treatment, MSS was dried, stabilized and suitable to be landfilled or incinerated, with a calorific value of about 5.6MJ/kg (compared to the initial value of 1.9MJ/kg fresh sludge).


Asunto(s)
Alocasia , Biodegradación Ambiental , Biomasa , Pennisetum , Aguas del Alcantarillado/química , Alocasia/química , Alocasia/metabolismo , Pennisetum/química , Pennisetum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA