Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 166(4): 645-657.e14, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38123024

RESUMEN

BACKGROUND & AIMS: Functional abdominal pain disorders (FAPDs) are more prevalent in female patients. Dietary fiber may alleviate FAPD symptoms; however, whether this effect is sex dependent remains unclear. We investigated the sex dependency of dietary fiber benefit on abdominal pain in children with FAPDs and explored the potential involvement of the gut microbiome. METHODS: In 2 cross-sectional cohorts of children with FAPDs (n = 209) and healthy control individuals (n = 105), we correlated dietary fiber intake with abdominal pain symptoms after stratifying by sex. We also performed sex-stratified and sex-interaction analyses on data from a double-blind trial in children with irritable bowel syndrome randomized to psyllium fiber (n = 39) or placebo (n = 49) for 6 weeks. Shotgun metagenomics was used to investigate gut microbiome community changes potentially linking dietary fiber intake with abdominal pain. RESULTS: In the cross-sectional cohorts, fiber intake inversely correlated with pain symptoms in boys (pain episodes: r = -0.24, P = .005; pain days: r = -0.24, P = 0.004) but not in girls. Similarly, in the randomized trial, psyllium fiber reduced the number of pain episodes in boys (P = .012) but not in girls. Generalized linear regression models confirmed that boys treated with psyllium fiber had greater reduction in pain episodes than girls (P = .007 for fiber × sex × time interaction). Age, sexual development, irritable bowel syndrome subtype, stool form, and microbiome composition were not significant determinants in the dietary fiber effects on pain reduction. CONCLUSIONS: Dietary fiber preferentially reduces abdominal pain frequency in boys, highlighting the importance of considering sex in future dietary intervention studies for FAPDs. (ClincialTrials.gov, Number NCT00526903).


Asunto(s)
Síndrome del Colon Irritable , Psyllium , Niño , Femenino , Humanos , Masculino , Dolor Abdominal/etiología , Dolor Abdominal/tratamiento farmacológico , Estudios Transversales , Fibras de la Dieta , Síndrome del Colon Irritable/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Nat Methods ; 19(7): 845-853, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35773532

RESUMEN

16S ribosomal RNA-based analysis is the established standard for elucidating the composition of microbial communities. While short-read 16S rRNA analyses are largely confined to genus-level resolution at best, given that only a portion of the gene is sequenced, full-length 16S rRNA gene amplicon sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, an approach that uses an expectation-maximization algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from simulated datasets and mock communities show that Emu is capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of Emu by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow with those returned by full-length 16S rRNA gene sequences processed with Emu.


Asunto(s)
Dromaiidae , Microbiota , Secuenciación de Nanoporos , Animales , Bacterias/genética , Dromaiidae/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
3.
Glob Chang Biol ; 30(3): e17239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38500015

RESUMEN

Dissimilatory iron reduction (DIR) can drive the release of organic carbon (OC) as carbon dioxide (CO2 ) by mediating electron transfer between organic compounds and microbes. However, DIR is also crucial for carbon sequestration, which can affect inorganic-carbon redistribution via iron abiotic-phase transformation. The formation conditions of modern carbonate-bearing iron minerals (ICFe ) and their potential as a CO2 sink are still unclear. A natural environment with modern ICFe , such as karst lake sediment, could be a good analog to explore the regulation of microbial iron reduction and sequential mineral formation. We find that high porosity is conducive to electron transport and dissimilatory iron-reducing bacteria activity, which can increase the iron reduction rate. The iron-rich environment with high calcium and OC can form a large sediment pore structure to support rapid DIR, which is conducive to the formation and growth of ICFe . Our results further demonstrate that the minimum DIR threshold suitable for ICFe formation is 6.65 µmol g-1 dw day-1 . DIR is the dominant pathway (average 66.93%) of organic anaerobic mineralization, and the abiotic-phase transformation of Fe2+ reduces CO2 emissions by ~41.79%. Our findings indicate that as part of the carbon cycle, DIR not only drives mineralization reactions but also traps carbon, increasing the stability of carbon sinks. Considering the wide geographic distribution of DIR and ICFe , our findings suggest that the "iron mesh" effect may become an increasingly important vector of carbon sequestration.


Asunto(s)
Secuestro de Carbono , Hierro , Hierro/química , Hierro/metabolismo , Dióxido de Carbono , Oxidación-Reducción , Ciclo del Carbono , Compuestos Férricos/metabolismo
4.
Environ Res ; 242: 117754, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016497

RESUMEN

Submerged macrophytes play important roles in nutrient cycling and are widely used in ecological restoration to alleviate eutrophication and improve water quality in lakes. Epiphytic microbial communities on leaves of submerged macrophytes might promote nitrogen cycling, but the mechanisms and quantification of their contributions remain unclear. Here, four types of field zones with different nutrient levels and submerged macrophytes, eutrophic + Vallisneria natans (EV), eutrophic + V. natans + Hydrilla verticillata, mesotrophic + V. natans + H. verticillata, and eutrophic without macrophytes were selected to investigate the microbial communities that involved in nitrification and denitrification. The alpha diversity of bacterial community was higher in the phyllosphere than in the water, and that of H. verticillata was higher compared to V. natans. Bacterial community structures differed significantly between the four zones. The highest relative abundance of dominant bacterioplankton genera involved in nitrification and denitrification was observed in the EV zone. Similarly, the alpha diversity of the epiphytic ammonia-oxidizing archaea and nosZI-type denitrifiers were highest in the EV zone. Consist with the diversity patterns, the potential denitrification rates were higher in the phyllosphere than those in the water. Higher potential denitrification rates in the phyllosphere were also found in H. verticillata than those in V. natans. Anammox was not detected in all samples. Nutrient loads, especially nitrogen concentrations were important factors influencing potential nitrification, denitrification rates, and bacterial communities, especially for the epiphytic nosZI-type taxa. Overall, we observed that the phyllosphere harbors more microbes and promotes higher denitrification rates compared to water, and epiphytic bacterial communities are shaped by nitrogen nutrients and macrophyte species, indicating that epiphytic microorganisms of submerged macrophytes can effectively contribute to the N removal in shallow lakes.


Asunto(s)
Desnitrificación , Hydrocharitaceae , Nitrógeno , Nitrificación , Bacterias/genética , Organismos Acuáticos , Lagos/microbiología
5.
PLoS Pathog ; 17(10): e1010015, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665847

RESUMEN

Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Infecciones por Clostridium/metabolismo , Resistencia a la Enfermedad/fisiología , Microbioma Gastrointestinal/fisiología , Animales , Ratones , Ratones Noqueados
6.
Appl Environ Microbiol ; 89(5): e0210822, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37129483

RESUMEN

The 16S rRNA gene has been extensively used as a molecular marker to explore evolutionary relationships and profile microbial composition throughout various environments. Despite its convenience and prevalence, limitations are inevitable. Variable copy numbers, intragenomic heterogeneity, and low taxonomic resolution have caused biases in estimating microbial diversity. Here, analysis of 24,248 complete prokaryotic genomes indicated that the 16S rRNA gene copy number ranged from 1 to 37 in bacteria and 1 to 5 in archaea, and intragenomic heterogeneity was observed in 60% of prokaryotic genomes, most of which were below 1%. The overestimation of microbial diversity caused by intragenomic variation and the underestimation introduced by interspecific conservation were calculated when using full-length or partial 16S rRNA genes. Results showed that, at the 100% threshold, microbial diversity could be overestimated by as much as 156.5% when using the full-length gene. The V4 to V5 region-based analyses introduced the lowest overestimation rate (4.4%) but exhibited slightly lower species resolution than other variable regions under the 97% threshold. For different variable regions, appropriate thresholds rather than the canonical value 97% were proposed for minimizing the risk of splitting a single genome into multiple clusters and lumping together different species into the same cluster. This study has not only updated the 16S rRNA gene copy number and intragenomic variation information for the currently available prokaryotic genomes, but also elucidated the biases in estimating prokaryotic diversity with quantitative data, providing references for choosing amplified regions and clustering thresholds in microbial community surveys. IMPORTANCE Microbial diversity is typically analyzed using marker gene-based methods, of which 16S rRNA gene sequencing is the most widely used approach. However, obtaining an accurate estimation of microbial diversity remains a challenge, due to the intragenomic variation and low taxonomic resolution of 16S rRNA genes. Comprehensive examination of the bias in estimating such prokaryotic diversity using 16S rRNA genes within ever-increasing prokaryotic genomes highlights the importance of the choice of sequencing regions and clustering thresholds based on the specific research objectives.


Asunto(s)
Bacterias , Microbiota , ARN Ribosómico 16S/genética , Genes de ARNr , Bacterias/genética , Archaea/genética , Filogenia , Análisis de Secuencia de ADN
7.
Microb Ecol ; 85(3): 965-979, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35641581

RESUMEN

Macrophyte rhizosphere microbes, as crucial components of the wetland ecosystem, play an important role in maintaining the function and stability of natural and constructed wetlands. Distinct environmental conditions and management practices between natural and constructed wetlands would affect macrophytes rhizosphere microbial communities and their associated functions. Nevertheless, the understanding of the diversity, composition, and co-occurrence patterns of the rhizosphere bacterial communities in natural and constructed wetlands remains unclear. Here, we used 16S rRNA gene high-throughput sequencing to characterize the bacterial community of the rhizosphere and bulk sediments of macrophyte Phragmites australis in representative natural and constructed wetlands. We observed higher alpha diversity of the bacterial community in the constructed wetland than that of the natural wetland. Additionally, the similarity of bacterial community composition between rhizosphere and bulk sediments in the constructed wetland was increased compared to that of the natural wetland. We also found that plants recruit specific taxa with adaptive functions in the rhizosphere of different wetland types. Rhizosphere samples of the natural wetland significantly enriched the functional bacterial groups that mainly related to nutrient cycling and plant-growth-promoting, while those of the constructed wetland-enriched bacterial taxa with potentials for biodegradation. Co-occurrence network analysis showed that the interactions among rhizosphere bacterial taxa in the constructed wetland were more complex than those of the natural wetland. This study broadens our understanding of the distinct selection processes of the macrophytes rhizosphere-associated microbes and the co-occurrence network patterns in different wetland types. Furthermore, our findings emphasize the importance of plant-microbe interactions in wetlands and further suggest P. australis rhizosphere enriched diverse functional bacteria that might enhance the wetland performance through biodegradation, nutrient cycling, and supporting plant growth.


Asunto(s)
Microbiota , Humedales , Rizosfera , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias , Microbiología del Suelo
8.
J Physiol ; 600(19): 4303-4323, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36082768

RESUMEN

Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.


Asunto(s)
Sistema Nervioso Entérico , Vancomicina , Animales , Antibacterianos/efectos adversos , Sistema Nervioso Entérico/fisiología , Femenino , Masculino , Ratones , Serotonina/farmacología , Vancomicina/farmacología , Agua
9.
Gastroenterology ; 160(4): 1301-1314.e8, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33227279

RESUMEN

BACKGROUND & AIMS: Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C difficile. We hypothesized that select mucus-associated bacteria would promote C difficile colonization and biofilm formation. METHODS: To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C difficile with the addition of human MUC2-coated coverslips. RESULTS: C difficile was found to colonize and form biofilms on MUC2-coated coverslips, and 16S rRNA sequencing showed a unique biofilm profile with substantial cocolonization with Fusobacterium species. Consistent with our bioreactor data, publicly available data sets and patient stool samples showed that a subset of patients with C difficile infection harbored high levels of Fusobacterium species. We observed colocalization of C difficile and F nucleatum in an aggregation assay using adult patients and stool of pediatric patients with inflammatory bowel disease and in tissue sections of patients with CDI. C difficile strains were found to coaggregate with F nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C difficile. Aggregation was shown to be unique between F nucleatum and C difficile, because other gut commensals did not aggregate with C difficile. Addition of F nucleatum also enhanced C difficile biofilm formation and extracellular polysaccharide production. CONCLUSIONS: Collectively, these data show a unique interaction of between pathogenic C difficile and F nucleatum in the intestinal mucus layer.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/inmunología , Fusobacterium nucleatum/inmunología , Microbioma Gastrointestinal/inmunología , Adhesinas Bacterianas/genética , Adhesión Bacteriana/inmunología , Biopelículas , Reactores Biológicos/microbiología , Clostridioides difficile/genética , Clostridioides difficile/inmunología , Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Heces/microbiología , Flagelos/genética , Flagelos/metabolismo , Fusobacterium nucleatum/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Mucina 2/metabolismo
10.
Environ Microbiol ; 24(9): 4079-4093, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35099108

RESUMEN

Aquaculture would change the environmental condition in the lake ecosystem, affecting the structure and function of the aquatic ecosystem. However, little is known about the underlying mechanisms controlling the distribution patterns of bacterial community respond to aquaculture in water column and sediment. Here, we investigated the composition, co-occurrence patterns, and assembly processes of planktonic and sedimentary bacterial communities (PBC vs. SBC) from an aquaculture-influenced zone of the Eastern Lake Taihu, China. We found that aquaculture activity greatly influenced the diversity and composition of SBC by inducing excess nitrogen into the sediments. Meanwhile, network analysis revealed that aquaculture activity strengthened species interactions within the SBC network but weakened the species interactions within the PBC network. Aquaculture activity also increased the importance of deterministic processes governing the assembly of SBC by heightening the importance of environmental filtering, whereas it decreased the relative importance of deterministic processes within the assembly of PBC. In addition, ecological restoration with macrophytes increased the diversity of PBC and formed a more stable PBC network by increasing the number of network keystones. Overall, our results indicated that aquaculture drove distinct co-occurrence patterns and assembly mechanisms of PBC and SBC. This study has fundamental implications in the lake ecosystem for evaluating the microbially mediated ecological consequences of aquaculture.


Asunto(s)
Ecosistema , Plancton , Acuicultura , Bacterias/genética , China , Sedimentos Geológicos/microbiología , Lagos/microbiología , Nitrógeno , Agua
11.
Environ Microbiol ; 24(10): 4931-4945, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35837847

RESUMEN

Microcystis spp., notorious bloom-forming cyanobacteria, are often present in colony form in eutrophic lakes worldwide. Uncovering the mechanisms underlying Microcystis colony formation and maintenance is vital to controlling the blooms, but it has long been a challenge. Here, bacterial communities and gene expression patterns of colonial and unicellular forms of one non-axenic strain of Microcystis aeruginosa isolated from Lake Taihu were compared. Evidently, different microbial communities between them were observed through 16S rDNA MiSeq sequencing. Metatranscriptome analyses revealed that transcripts for pathways involved in bacterial biofilm formation, such as biosynthesis of peptidoglycan and arginine by Bacteroidetes, methionine biosynthesis, alginate metabolism, flagellum, and motility, as well as widespread colonization islands by Proteobacteria, were highly enriched in the colonial form. Furthermore, transcripts for nitrogen fixation and denitrification pathways by Proteobacteria that usually occur in biofilms were significantly enriched in the colonial Microcystis. Results revealed that microbes associated with Microcystis colonies play important roles through regulation of biofilm-related genes in colony formation and maintenance. Moreover, Microcystis colony represents a potential 'buoyant particulate biofilm', which is a good model for biofilm studies. The biofilm features of colonial Microcystis throw a new light on management and control of the ubiquitous blooms in eutrophic waters.


Asunto(s)
Microcystis , Alginatos/metabolismo , Arginina/metabolismo , Biopelículas , ADN Ribosómico , Expresión Génica , Lagos/microbiología , Metionina/genética , Metionina/metabolismo , Consorcios Microbianos , Microcystis/metabolismo , Peptidoglicano/metabolismo
12.
Appl Environ Microbiol ; 88(7): e0232821, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285714

RESUMEN

The Asian clam Corbicula fluminea is a keystone zoobenthos in freshwater ecosystems. However, its associated microbiome is not well understood. We investigated the bacterial communities of this clam and its surrounding environment, including sediment and water simultaneously, in a large lake by means of 16S rRNA gene sequencing. Approximately two-thirds of the bacterial operational taxonomic units (OTUs) associated with clams were observed in the surrounding environment and mostly from particle-associated samples. The associated bacterial communities were site specific and more similar to environmental bacteria from the same site than those at other sites, suggesting a local environmental influence on host bacteria. However, the significant differences in bacterial diversities and compositions between the clam and the environment also indicated strong host selection pressure on bacteria from the surrounding environment. Bacteria affiliated with Firmicutes, Spirochaetes, Tenericutes, Bacteroidetes, Epsilonbacteraeota, Patescibacteria, and Fusobacteria were found to be significantly enriched in the clams in comparison to their local environment. Oligotyping analyses of the core-associated bacterial OTUs also demonstrated that most of the core OTUs had lower relative abundances and occurrence frequencies in environmental samples. The core bacterial OTUs were found to play an important role in maintaining the stability of the bacterial community network. These core bacteria included the two most abundant taxa Romboutsia and Paraclostridium with the potential function of fermenting polysaccharides for assisting host clams in food digestion. Overall, we demonstrate that clam-associated bacteria were spatially dynamic and site specific, which were mainly structured both by local environments and host selection. IMPORTANCE The Asian clam Corbicula fluminea is an important benthic clam in freshwater ecosystems due to its high population densities and high filtering efficiency for particulate organic matter. While the associated microbiota is believed to be vital for host living, our knowledge about the compositions, sources, and potential functions is still lacking. We found that C. fluminea offers a unique ecological niche for specific lake bacteria. We also observed high intrahabitat variation in the associated bacterial communities. Such variations were driven mainly by local environments, followed by host selection pressure. While the local microbes served as a source of the clam-associated bacteria, host selection resulted in enrichments of bacterial taxa with the potential for assisting the host in organic matter digestion. These results significantly advance our current understanding of the origins and ecological roles of the microbiota associated with a keynote clam in freshwater ecosystems.


Asunto(s)
Corbicula , Microbiota , Contaminantes Químicos del Agua , Animales , Bacterias/genética , Lagos , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua/análisis
13.
Mol Ecol ; 31(4): 1180-1195, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34846091

RESUMEN

Comparison of the spatial distribution and assembly processes between bulk and rhizosphere bacterial communities at multiple spatial scales is vital for understanding the generation and maintenance of microbial diversity under the influence of plants. However, biogeographical patterns and the underlying mechanisms of microbial communities in bulk and rhizosphere sediments of aquatic ecosystems remain unclear. Here, we collected 140 bulk and rhizosphere sediment samples of Phragmites australis from 14 lakeshore zones across a 510-km transect in the Middle-Lower Yangtze plain. We performed high-throughput sequencing to investigate the bacterial diversity, composition, spatial distribution and assembly processes of these samples. Bacterial communities in the rhizosphere sediment exhibited higher alpha diversity but lower beta diversity than those in the bulk sediment. Both bulk and rhizosphere sediment bacterial communities had significant distance-decay relationships, but spatial turnover of the rhizosphere sediment bacterial community was strikingly lower than that of bulk sediment. Despite variable selection dominating the assembly processes of bacterial communities in bulk sediment, the rhizosphere of P. australis enhanced the role of dispersal limitation in governing bacterial communities. The relative importance of different ecological processes in determining bacterial assembly presented distinct patterns of increasing or decreasing linearly with an increase of scale. This investigation highlights the convergent selection of the aquatic plant rhizosphere for surrounding bacterial communities and emphasizes the importance of different ecological processes on bacterial community assembly in sediment environments over different scales. Furthermore, we provide a preliminary framework for exploring the scale dependence of microbial community assembly in aquatic ecosystems.


Asunto(s)
Microbiota , Rizosfera , Bacterias/genética , Microbiota/genética , Poaceae/microbiología
14.
Crit Rev Food Sci Nutr ; 62(19): 5307-5321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33635174

RESUMEN

Inflammatory bowel disease (IBD) is a chronic gastro-intestinal disorders of unknown etiology. There are several drugs approved for treating IBD patients with active disease, including first-line use of aminosalicylates, and secondary choices of immunomodulators and other therapies. These medications might manage disease symptoms, but have also shown significant side-effects in IBD patients. Tea is the second largest beverage in the world and its main active ingredients including tea polyphenols, polysaccharides and tea pigments have been shown promising anti-inflammatory and antioxidant properties. In this review, we summarize the influence of different tea varieties including green tea, black tea and dark tea as potential nutritional therapy for preventing and treating IBD, and discuss the mechanisms of tea ingredients involved in the regulation of oxidative stress, inflammation, signaling pathways, and gut microbiota that could benefit for IBD disease management. Our observation directs further basic and clinical investigations on tea polyphenols and their derivatives as novel IBD therapeutic agents.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/uso terapéutico , Té/metabolismo
15.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36269580

RESUMEN

Four Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and non-motile strains (CAK1WT, CAK8WT, CAK57W and CCL10WT) were isolated from salt lakes in China. Comparisons based on the 16S rRNA gene sequences showed that the four strains show less than 98.9% similarity to species of the genus Psychroflexus. The phylogenetic tree reconstructed based on 16S rRNA gene sequences also showed that Psychroflexus species are the most closely related neighbours of the four strains. The sequenced draft genome sizes of strains CAK1WT, CAK8WT, CAK57W and CCL10WT were 3.01, 2.95, 3.01 and 3.04 Mbp with G+C contents of 37.3, 35.8, 37.5 and 36.6 %, respectively. The phylogenomic trees reconstructed based on the UBCG and GET_PHYLOMARKERS pipelines all demonstrated that the four strains belong to the genus Psychroflexus. The calculated pairwise orthologous average nucleotide identity based on usearch, digital DNA-DNA hybridization and average amino acid sequence identity values among strains CAK1WT, CAK8WT, CAK57W, CCL10WT and other species of the genus Psychroflexus were equal or lower than 91.1, 43.5 and 92.2%; the values between strains CAK1WT and CAK57W were 98.8, 90.2 and 99.0 %, respectively. The respiratory quinone of the four strains was MK-6. Their major fatty acids were iso-C14 : 0, C15 : 1 ω10c, iso-C15 : 0 and anteiso-C15 : 0. The major polar lipids of the four strains included phosphatidylethanolamine, an unidentified aminolipid and two kinds of unidentified lipids, and only strain CCL10WT contained diphosphatidylglycerol. Based on the above descriptions, strains CAK1WT, CAK8WT, CAK57W and CCL10WT should belong to the genus Psychroflexus and represent three independent novel species, for which the names Psychroflexus curvus sp. nov. (type strain CAK1WT=GDMCC 1.2644T=KCTC 82857T), Psychroflexus longus sp. nov. (type strain CAK8WT=GDMCC 1.2646T=KCTC 82859T) and Psychroflexus montanilacus sp. nov. (type strain CCL10WT=GDMCC 1.2631T=KCTC 82860T) are proposed.


Asunto(s)
Flavobacteriaceae , Lagos , Técnicas de Tipificación Bacteriana , Composición de Base , Cardiolipinas , Catalasa/genética , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Lagos/microbiología , Nucleótidos , Fosfatidiletanolaminas/química , Fosfolípidos/química , Filogenia , Quinonas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tibet
16.
Artículo en Inglés | MEDLINE | ID: mdl-35076362

RESUMEN

Two Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and non-motile strains (LM13ST and JZCK2T) were isolated from hypersaline lakes in China. The colonies of both strains were yellow-pigmented and convex. Both strains could grow at 4-34 °C, pH 6.5-9.0 and with 1.0-13.0 % (w/v) NaCl. Comparisons based on 16S rRNA gene sequences showed that strains LM13ST and JZCK2T share less than 98.3 % similarity with species of the genus Salegentibacter. The phylogenetic tree reconstructed based on 16S rRNA gene sequences also showed that Salegentibacter species are the most closely related neighbours of strains LM13ST and JZCK2T. The sequenced draft genome sizes of strains LM13ST and JZCK2T are 4.06 and 4.22 Mbp with G+C contents of 37.0 and 37.8 mol%, respectively. The phylogenomic tree reconstructed using the Up-to-date Bacterial Core Gene set pipeline also demonstrated that both strains belong to the genus Salegentibacter. The calculated pairwise average nucleotide identity values and digital DNA-DNA hybridization values between strains LM13ST and JZCK2T and Salegentibacter species were less than 86.4 and 32.0 %, respectively. The respiratory quinone in both strains was MK-6. Their major fatty acids were iso-C12 : 0, iso-C14 : 0, C15 : 1 ω10c, iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and C17 : 1 ω10c. Their major polar lipids included phosphatidylethanolamine, one unidentified lipid and one unidentified aminolipid, but strain LM13ST also contained one more unidentified aminolipid, one more unidentified lipid and one unidentified phospholipid. Combining the above descriptions, strains LM13ST and JZCK2T should represent two independent novel species of the genus Salegentibacter, for which the names Salegentibacter lacus sp. nov. (type strain LM13ST=GDMCC 1.2643T=KCTC 82861T) and Salegentibacter tibetensis sp. nov. (type strain JZCK2T=GDMCC 1.2621T=KCTC 82862T) are proposed.


Asunto(s)
Ácidos Grasos , Flavobacteriaceae/clasificación , Lagos , Filogenia , Aguas Salinas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Lagos/microbiología , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tibet
17.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748472

RESUMEN

Thousands of lakes harbouring different characteristics (pH, salinity, temperature) are located on the Tibetan Plateau, and the mining of microbial resources inhabited in these lakes has great value. Two Gram-stain-negative, aerobic, rod-shaped, non-motile strains (LQ15WT and AIY15WT) were isolated from freshwater lakes on the Tibetan Plateau. Comparisons based on the 16S rRNA gene sequences showed that both strains LQ15WT and AIY15WT share 16S rRNA gene sequence similarities 98.4 % with Aquiflexum aquatile Z0201T, but only about 95.0 % with Aquiflexum balticum DSM 16537T. The 16S rRNA gene sequence similarity between strains LQ15WT and AIY15WT was 98.9 %. The phylogenetic tree reconstructed based on 16S rRNA gene sequences also showed that strains LQ15WT and AIY15WT take A. aquatile Z0201T as their closest neighbour and these three strains form a tight cluster. In the phylogenomic tree, the genus Aquiflexum was splited into two clusters by Mariniradius saccharolyticus. Strains LQ15WT, AIY15WT and A. aquatile Z0201T still formed a close cluster, and A. balticum DSM 16537T and Aquiflexum lacus CUG 91378T formed another cluster. The calculated OrthoANIu, average amino acid identity and digital DNA-DNA hybridization values among strains LQ15WT, AIY15WT, A. aquatile Z0201T, A. balticum DSM 16537T and A. lacus CUG 91378T were less than 91.0, 92.9 and 42.1 %, respectively. The major respiratory quinones of both strains LQ15WT and AIY15WT were MK-7 (32 %) and MK-8 (68 %), and their major fatty acids were iso-C15 : 0, C18 : 1 ω9c, summed feature 3 and summed feature 9. The predominant polar lipids of both strains were phosphatidylethanolamine, unidentified aminophospholipids, unidentified phospholipids and lipids. Strain AIY15WT also contained phosphatidylglycerol and unidentified glycolipid. Considering the distinct phylogenetic relationships and chemotaxonomic characteristics between strains A. aquatile Z0201T and A. balticum DSM 16537T, it is proposed to reclassify A. aquatile into a novel genus Cognataquiflexum gen. nov. as Cognataquiflexum aquatile comb. nov., and strains LQ15WT and AIY15WT should represent two independent novel species of the genus Cognataquiflexum, for which the names Cognataquiflexum nitidum sp. nov. (type strain: LQ15WT=CICC 24711T=JCM 34222T) and Cognataquiflexum rubidum sp. nov. (type strain: AIY15WT=CICC 24708T=JCM 34612T) are proposed.


Asunto(s)
Ácidos Grasos , Lagos , Ácidos Grasos/química , Tibet , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Fosfolípidos/química
18.
Microb Ecol ; 83(2): 314-327, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33956174

RESUMEN

Rhizosphere microbes play a key role in maintaining plant health and regulating biogeochemical cycles. The active bacterial community (ABC) in rhizosphere, as a small fraction of the rhizosphere resident bacterial community (RBC), has the potential to actively participate in nutrient cycling processes at the root-sediment interface. Here, we investigated the ABC and RBC within the rhizosphere of Phragmites australis (P. australis) subjected to different environmental conditions (i.e., seasons and flooding conditions) in Lake Taihu, China. Our results indicated that RBC exhibited significantly higher alpha diversity as well as lower beta diversity than ABC. The active ratios of 16S rRNA to 16S rDNA (also RNA/DNA) of the bacterial communities in summer and winter suggested a lower proportion of potential active taxa in the rhizosphere bacterial community during summer. Network analysis showed that negative correlations in each network were observed to dominate the species correlations between the rhizosphere and bulk sediment bacterial communities. Our results revealed that niche differentiation and seasonal variation played crucial roles in driving the assembly of ABC and RBC associated with the rhizospheres of P. australis. These findings broaden our knowledge about how rhizosphere bacterial communities respond to environmental variations through changing their diversity and composition.


Asunto(s)
Rizosfera , Microbiología del Suelo , Bacterias/genética , Poaceae/microbiología , ARN Ribosómico 16S/genética
19.
J Pediatr Gastroenterol Nutr ; 74(2): 227-235, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724447

RESUMEN

OBJECTIVES: Fecal microbiota transplantation (FMT) is arguably the most effective treatment for recurrent Clostridioides difficile infection (rCDI). Clinical reports on pediatric FMT have not systematically evaluated microbiome restoration in patients with co-morbidities. Here, we determined whether FMT recipient age and underlying co-morbidity influenced clinical outcomes and microbiome restoration when treated from shared fecal donor sources. METHODS: Eighteen rCDI patients participating in a single-center, open-label prospective cohort study received fecal preparation from a self-designated (single case) or two universal donors. Twelve age-matched healthy children and four pediatric ulcerative colitis (UC) cases from an independent serial FMT trial, but with a shared fecal donor were examined as controls for microbiome restoration using 16S rRNA gene sequencing of longitudinal fecal specimens. RESULTS: FMT was significantly more effective in rCDI recipients without underlying chronic co-morbidities where fecal microbiome composition in post-transplant responders was restored to levels of healthy children. Microbiome reconstitution was not associated with symptomatic resolution in some rCDI patients who had co-morbidities. Significant elevation in Bacteroidaceae, Bifidobacteriaceae, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae was consistently observed in pediatric rCDI responders, while Enterobacteriaceae decreased, correlating with augmented complex carbohydrate degradation capacity. CONCLUSION: Recipient background disease was a significant risk factor influencing FMT outcomes. Special attention should be taken when considering FMT for pediatric rCDI patients with underlying co-morbidities.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Niño , Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal , Heces , Humanos , Morbilidad , Estudios Prospectivos , ARN Ribosómico 16S/genética , Recurrencia , Resultado del Tratamiento
20.
Environ Res ; 214(Pt 1): 113836, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810809

RESUMEN

The Tibetan Plateau characterized by high altitude and low temperature, where a great number of lakes are located, is a hotspot of global biodiversity research. Both bacterial and fungal communities are vital participants of biogeochemical cycling in lake ecosystems. However, we know very little about the large-scale biogeographic patterns and the underlying assembly mechanisms of lake benthic microbial communities on the Tibetan Plateau. To investigate the biogeographic patterns and their underlying assembly mechanisms of benthic bacterial and fungal communities, we collected sediment samples from 11 lakes on the Tibetan Plateau (maximum geographic distance between lakes over 1100 km). Benthic community diversity and composition were determined using the high-throughput sequencing technique. Our results indicated that there were contrasting distance-decay relationships between benthic bacterial and fungal communities on a regional scale. Benthic bacterial communities showed a significant distance-decay relationship, whereas no significant relationship was observed for benthic fungal communities. Deterministic processes dominated the bacterial community assembly, whereas fungal community assembly was more stochastic. pH was a dominant factor in influencing the geographic distribution of benthic microbial communities. Co-occurrence network analysis revealed that bacterial communities showed higher complexity and greater stability than those of the fungal communities. Taken together, this study contributes to a novel understanding of the assembly mechanisms underlying the biogeographic distribution of plateau benthic bacterial and fungal communities at a large scale.


Asunto(s)
Microbiota , Micobioma , Bacterias , Humanos , Lagos , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA