RESUMEN
Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.
Asunto(s)
Retículo Endoplásmico , Polisacáridos , Transporte de Proteínas , Humanos , Glicosilación , Retículo Endoplásmico/metabolismo , Polisacáridos/metabolismo , Glicoproteínas/metabolismo , Membrana Celular/metabolismo , Pliegue de Proteína , Proteómica/métodos , Glicoproteínas de Membrana/metabolismo , Aparato de Golgi/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Heat shock proteins are chaperones, and they are responsible for protein folding in cells. Heat shock protein 90 (HSP90) is one of the most important chaperones in human cells, and its inhibition is promising for cancer therapy. However, despite the development of multiple HSP90 inhibitors, none of them has been approved for disease treatment due to unexpected cellular toxicity and side effects. Hence, a more comprehensive investigation of cellular response to HSP90 inhibitors can aid in a better understanding of the molecular mechanisms of the cytotoxicity and side effects of these inhibitors. The thermal stability shifts of proteins, which represent protein structure and interaction alterations, can provide valuable information complementary to the results obtained from commonly used abundance-based proteomics analysis. Here, we systematically investigated cell response to different HSP90 inhibitors through global quantification of protein thermal stability changes using thermal proteome profiling, together with the measurement of protein abundance changes. Besides the targets and potential off-targets of the drugs, proteins with significant thermal stability changes under the HSP90 inhibition are found to be involved in cell stress responses and the translation process. Moreover, proteins with thermal stability shifts under the inhibition are upstream of those with altered expression. These findings indicate that the HSP90 inhibition perturbs cell transcription and translation processes. The current study provides a different perspective for achieving a better understanding of cellular response to chaperone inhibition.
Asunto(s)
Antineoplásicos , Proteoma , Humanos , Proteoma/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas de Choque Térmico , Antineoplásicos/farmacologíaRESUMEN
The 2nd CASMS conference was held virtually through Gather. Town platform from October 17 to 21, 2022, with a total of 363 registrants including an outstanding and diverse group of scientists at the forefront of their research fields from both academia and industry worldwide, especially in the United States and China. The conference offered a 5-day agenda with an exciting scientific program consisting of two plenary lectures, 14 parallel symposia, and 4 special sessions in which a total of 97 invited speakers presented technological innovations and their applications in proteomics & biological mass spectrometry and metabo-lipidomics & pharmaceutical mass spectrometry. In addition, 18 invited speakers/panelists presented at 3 research-focused and 2 career development workshops. Moreover, 144 posters, 54 lightning talks, 5 sponsored workshops, and 14 exhibitions were presented, from which 20 posters and 8 lightning talks received presentation awards. Furthermore, the conference featured 1 MCP lectureship and 5 young investigator awardees for the first time to highlight outstanding mid-career and early-career rising stars in mass spectrometry from our society. The conference provided a unique scientific platform for young scientists (i.e., graduate students, postdocs and junior faculty/investigators) to present their research, meet with prominent scientists, and learn about career development and job opportunities (http://casms.org).
Asunto(s)
Espectrometría de Masas , Sociedades Científicas , Humanos , China , Preparaciones Farmacéuticas , Proteómica , Estados UnidosRESUMEN
INTRODUCTION: Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets. AREAS COVERED: In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies. EXPERT OPINION: Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.
The cell surface contains many important proteins such as receptors and transporters. These proteins are responsible for cells to communicate with each other, take nutrients from outside, and interact with their surroundings. Aberrant changes in surface protein expression, modifications, and interactions with other molecules directly result in various diseases, including infections, immune disorders, and cancer. Currently, mass spectrometry (MS)-based proteomics is very powerful to study proteins on a large scale, and there has been a strong interest in employing MS to investigate cell-surface proteins. In this review, we discuss different methods combining mass spectrometry with other approaches to systematically characterize protein abundance, dynamics, modification, and interaction on the cell surface. These methods help uncover protein functions and specific cell-surface proteins related to human diseases. A better understanding of the functions and properties of cell-surface proteins can facilitate the discovery of surface proteins as effective biomarkers for disease early detection and the identification of drug targets for disease treatment.
Asunto(s)
Proteínas de la Membrana , Procesamiento Proteico-Postraduccional , Humanos , Espectrometría de Masas/métodos , Proteínas de la Membrana/metabolismo , GlicosilaciónRESUMEN
Surface and secreted glycoproteins are essential to cells and regulate many extracellular events. Because of the diversity of glycans, the low abundance of many glycoproteins, and the complexity of biological samples, a system-wide investigation of extracellular glycoproteins is a daunting task. With the development of modern mass spectrometry (MS)-based proteomics, comprehensive analysis of different protein modifications including glycosylation has advanced dramatically. This review focuses on the investigation of extracellular glycoproteins using MS-based proteomics. We first discuss the methods for selectively enriching surface glycoproteins and investigating protein interactions on the cell surface, followed by the application of MS-based proteomics for surface glycoprotein dynamics analysis and biomarker discovery. We then summarize the methods to comprehensively study secreted glycoproteins by integrating various enrichment approaches with MS-based proteomics and their applications for global analysis of secreted glycoproteins in different biological samples. Collectively, MS significantly expands our knowledge of extracellular glycoproteins and enables us to identify extracellular glycoproteins as potential biomarkers for disease detection and drug targets for disease treatment.
Asunto(s)
Glicoproteínas , Procesamiento Proteico-Postraduccional , Glicoproteínas/química , Glicosilación , Espectrometría de Masas/métodos , Proteómica/métodosRESUMEN
Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).
Asunto(s)
Espectrometría de Masas , Lipidómica , Preparaciones Farmacéuticas , Proteómica , Congresos como AsuntoRESUMEN
The N-termini of proteins can regulate their degradation, and the same protein with different N-termini may have distinct dynamics. Recently, it was found that N-terminal glycine can serve as a degron recognized by two E3 ligases, but N-terminal glycine was also reported to stabilize proteins. Here we developed a chemoenzymatic method for selective enrichment of proteoforms with N-terminal glycine and integrated dual protease cleavage to further improve the enrichment specificity. Over 2000 unique peptides with protein N-terminal glycine were analyzed from >1000 proteins, and most of them are previously unknown, indicating the effectiveness of the current method to capture low-abundance proteoforms with N-terminal glycine. The degradation rates of proteoforms with N-terminal glycine were quantified along with those of proteins from the whole proteome. Bioinformatic analyses reveal that proteoforms with N-terminal glycine with the fastest and slowest degradation rates have different functions and localizations. Membrane proteins with N-terminal glycine and proteins with N-terminal glycine from the N-terminal methionine excision degrade more rapidly. Furthermore, the secondary structures, adjacent amino acid residues, and protease specificities for N-terminal glycine are also vital for protein degradation. The results advance our understanding of the effects of N-terminal glycine on protein properties and functions.
Asunto(s)
Aminoácidos , Glicina , Glicina/metabolismo , Proteolisis , Aminoácidos/metabolismo , Péptido Hidrolasas/metabolismo , Proteoma/metabolismo , Estabilidad Proteica , Procesamiento Proteico-PostraduccionalRESUMEN
Glycosylation is one of the most common and important protein modifications, and it regulates the properties and functions of a wide range of proteins. Aberrant glycosylation is directly related to human diseases. Recently, with the advancement of mass spectrometry (MS) instrumentation and MS-based glycoproteomic methods, global characterization of glycoproteins in complex biological samples has become possible. Using quantitative proteomics, the abundance of glycoproteins in different samples can be quantified, which provides a wealth of information to further our understanding of protein functions, cellular activities, and the molecular mechanisms of diseases. In this review, we discuss quantitative proteomic methods used for comprehensive analysis of protein glycosylation, and cover the applications of quantitative glycoproteomics to unveil the properties and functions of glycoproteins and their association with various diseases. It is expected that quantitative proteomic methods will be extensively applied to explore the role of protein glycosylation in complex biological systems, and to identify glycoproteins as biomarkers for disease detection and as therapeutic targets for disease treatment.
Asunto(s)
Glicoproteínas , Proteómica , Humanos , Proteómica/métodos , Glicoproteínas/metabolismo , Glicosilación , Procesamiento Proteico-Postraduccional , Espectrometría de Masas/métodosRESUMEN
Protein O-GlcNAcylation plays extremely important roles in mammalian cells, regulating signal transduction and gene expression. This modification can happen during protein translation, and systematic and site-specific analysis of protein co-translational O-GlcNAcylation can advance our understanding of this important modification. However, it is extraordinarily challenging because normally O-GlcNAcylated proteins are very low abundant and the abundances of co-translational ones are even much lower. Here, we developed a method integrating selective enrichment, a boosting approach, and multiplexed proteomics to globally and site-specifically characterize protein co-translational O-GlcNAcylation. The boosting approach using the TMT labeling dramatically enhances the detection of co-translational glycopeptides with low abundance when enriched O-GlcNAcylated peptides from cells with a much longer labeling time was used as a boosting sample. More than 180 co-translational O-GlcNAcylated proteins were site-specifically identified. Further analyses revealed that among co-translational glycoproteins, those related to DNA binding and transcription are highly overrepresented using the total identified O-GlcNAcylated proteins in the same cells as the background. Compared with the glycosylation sites on all glycoproteins, co-translational sites have different local structures and adjacent amino acid residues. Overall, an integrative method was developed to identify protein co-translational O-GlcNAcylation, which is very useful to advance our understanding of this important modification.
Asunto(s)
Péptidos , Procesamiento Proteico-Postraduccional , Animales , Glicosilación , Péptidos/metabolismo , Glicoproteínas/metabolismo , Acetilglucosamina/química , Mamíferos/metabolismoRESUMEN
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked ß-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
Asunto(s)
Acetilgalactosamina , Neoplasias , Antígenos de Carbohidratos Asociados a Tumores , Glicoproteínas/química , Humanos , Espectrometría de Masas/métodosRESUMEN
Protein structures are decisive for their activities and interactions with other molecules. Global analysis of protein structures and conformational changes cannot be achieved by commonly used abundance-based proteomics. Here, we integrated cysteine covalent labeling, selective enrichment, and quantitative proteomics to study protein structures and structural changes on a large scale. This method was applied to globally investigate protein structures in HEK293T cells and protein structural changes in the cells with the tunicamycin (Tm)-induced endoplasmic reticulum (ER) stress. We quantified several thousand cysteine residues, which contain unprecedented and valuable information of protein structures. Combining this method with pulsed stable isotope labeling by amino acids in cell culture, we further analyzed the folding state differences between pre-existing and newly synthesized proteins in cells under the Tm treatment. Besides newly synthesized proteins, unexpectedly, many pre-existing proteins were found to become unfolded upon ER stress, especially those related to gene transcription and protein translation. Furthermore, the current results reveal that N-glycosylation plays a more important role in the folding process of the tertiary and quaternary structures than the secondary structures for newly synthesized proteins. Considering the importance of cysteine in protein structures, this method can be extensively applied in the biological and biomedical research fields.
Asunto(s)
Estrés del Retículo Endoplásmico , Proteómica , Cisteína , Células HEK293 , Humanos , Proteínas , Proteómica/métodos , Tunicamicina/farmacologíaRESUMEN
Divalent metal cations are essential to the structure and function of the ribosome. Previous characterizations of the ribosome performed under standard laboratory conditions have implicated Mg2+ as a primary mediator of ribosomal structure and function. Possible contributions of Fe2+ as a ribosomal cofactor have been largely overlooked, despite the ribosome's early evolution in a high Fe2+ environment, and the continued use of Fe2+ by obligate anaerobes inhabiting high Fe2+ niches. Here, we show that (i) Fe2+ cleaves RNA by in-line cleavage, a non-oxidative mechanism that has not previously been shown experimentally for this metal, (ii) the first-order in-line rate constant with respect to divalent cations is >200 times greater with Fe2+ than with Mg2+, (iii) functional ribosomes are associated with Fe2+ after purification from cells grown under low O2 and high Fe2+ and (iv) a small fraction of Fe2+ that is associated with the ribosome is not exchangeable with surrounding divalent cations, presumably because those ions are tightly coordinated by rRNA and deeply buried in the ribosome. In total, these results expand the ancient role of iron in biochemistry and highlight a possible new mechanism of iron toxicity.
Asunto(s)
Cationes Bivalentes/metabolismo , Hierro/metabolismo , División del ARN/genética , Ribosomas/genética , Sitios de Unión , Cationes Bivalentes/química , Hierro/química , Magnesio/química , Magnesio/metabolismo , Metales/química , Metales/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ribosomas/químicaRESUMEN
The tyrosine residue of proteins participates in a wide range of activities including enzymatic catalysis, protein-protein interaction, and protein-ligand binding. However, the functional annotation of the tyrosine residues on a large scale is still very challenging. Here, we report a novel method integrating azo coupling, bioorthogonal chemistry, and multiplexed proteomics to globally investigate the tyrosine reactivity in the human proteome. Based on the azo-coupling reaction between aryl diazonium salt and the tyrosine residue, two different probes were evaluated, and the probe with the best performance was employed to further study the tyrosine residues in the human proteome. Then, tagged tyrosine-containing peptides were selectively enriched using bioorthogonal chemistry, and after the cleavage, a small tag on the peptides perfectly fits for site-specific analysis by MS. Coupling with multiplexed proteomics, we quantified over 5000 tyrosine sites in MCF7 cells, and these quantified sites displayed a wide range of reactivity. The tyrosine residues with high reactivity were found on functionally and structurally diverse proteins, including those with the catalytic activity and binding property. This method can be extensively applied to advance our understanding of protein functions and facilitate the development of covalent drugs to regulate protein activity.
Asunto(s)
Proteoma , Tirosina , Humanos , Ligandos , Unión Proteica , ProteómicaRESUMEN
Glycoproteins secreted by cells play essential roles in the regulation of extracellular activities. Secreted glycoproteins are often reflective of cellular status, and thus glycoproteins from easily accessible bodily fluids can serve as excellent biomarkers for disease detection. Cultured cells have been extensively employed as models in the research fields of biology and biomedicine, and global analysis of glycoproteins secreted from these cells provides insights into cellular activities and glycoprotein functions. However, comprehensive identification and quantification of secreted glycoproteins is a daunting task because of their low abundances compared with the high-abundance serum proteins required for cell growth and proliferation. Several studies employed serum-free media to analyze secreted proteins, but it has been shown that serum starvation, even for a short period of time, can alter protein secretion. To overcome these issues, we developed a method to globally characterize secreted glycoproteins and their N-glycosylation sites from cultured cells by combining selective enrichment of secreted glycoproteins with a boosting approach. The results demonstrated the importance of the boosting sample selection and the boosting-to-sample ratio for improving the coverage of secreted glycoproteins. The method was applied to globally quantify secreted glycoproteins from THP-1 monocytes and macrophages in response to lipopolysaccharides (LPS) and from Hep G2 cells treated with TGF-ß without serum starvation. We found differentially secreted glycoproteins in these model systems that showed the cellular response to the immune activation or the epithelial-to-mesenchymal transition. Benefiting from the selective enrichment and the signal enhancement of low-abundance secreted glycoproteins, this method can be extensively applied to study secreted glycoproteins without serum starvation, which will provide a better understanding of protein secretion and cellular activity.
Asunto(s)
Glicoproteínas/química , Técnicas de Cultivo de Célula , Química Clic , Glicoproteínas/metabolismo , Células Hep G2 , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Péptidos/química , Factor de Crecimiento Transformador beta/farmacologíaRESUMEN
Glycoproteins on the surface of immune cells play extremely important roles in response to pathogens. Yet, a systematic and time-resolved investigation of surface glycoproteins during the immune response remains to be explored. Integrating selective enrichment of surface glycoproteins with multiplexed proteomics, we globally and site-specifically quantified the dynamics of surface glycoproteins on THP-1 monocytes and macrophages in response to bacterial infection and during the monocyte-to-macrophage differentiation. The time-resolved analysis reveals transient changes and differential remodeling of surface glycoproteins on both cell types, and potential upstream regulators and downstream effects of the regulated glycoproteins. Besides, we identified novel surface glycoproteins participating in the immune response such as APMAP, and site-specific changes of glycoproteins. This study provides unprecedented information to deepen our understanding of glycoproteins and cellular activities.
Asunto(s)
Infecciones Bacterianas/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/inmunología , Monocitos/inmunología , Humanos , Glicoproteínas de Membrana/químicaRESUMEN
O-GlcNAcylation has gradually been recognized as a critically important protein post-translational modification in mammalian cells. Besides regulation of gene expression, its crosstalk with protein phosphorylation is vital for cell signaling. Despite its importance, comprehensive analysis of O-GlcNAcylation is extraordinarily challenging due to the low abundances of many O-GlcNAcylated proteins and the complexity of biological samples. Here, we developed a novel chemoenzymatic method based on a wild-type galactosyltransferase and uridine diphosphate galactose (UDP-Gal) for global and site-specific analysis of protein O-GlcNAcylation. This method integrates enzymatic reactions and hydrazide chemistry to enrich O-GlcNAcylated peptides. All reagents used are more easily accessible and cost-effective as compared to the engineered enzyme and click chemistry reagents. Biological triplicate experiments were performed to validate the effectiveness and the reproducibility of this method, and the results are comparable with the previous chemoenzymatic method using the engineered enzyme and click chemistry. Moreover, because of the promiscuity of the galactosyltransferase, 18 unique O-glucosylated peptides were identified on the EGF domain from nine proteins. Considering that effective and approachable methods are critical to advance glycoscience research, the current method without any sample restrictions can be widely applied for global analysis of protein O-GlcNAcylation in different samples.
Asunto(s)
Acetilglucosamina/química , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Glicosilación , Humanos , Células MCF-7 , Péptidos/química , Conformación Proteica , Ingeniería de ProteínasRESUMEN
Protein synthesis is quickly and tightly regulated in cells to adapt to the ever-changing extracellular and intracellular environment. Accurate quantitation of rapid protein synthesis changes can provide insights into protein functions and cellular activities, but it is very challenging to achieve because of the lack of effective analysis methods. Here, we developed an effective mass spectrometry-based method named quantitative O-propargyl-puromycin tagging (QOT) by integrating O-propargyl-puromycin (OPP) labeling, bioorthogonal chemistry, and multiplexed proteomics for global and quantitative analysis of rapid protein synthesis. The current method enables us to accurately quantitate rapid changes of newly synthesized proteins because, unlike amino acids and their analogs, OPP can be utilized by the ribosome immediately without being activated and conjugated to tRNA, and thus cell starvation or pretreatment is not required. This method was applied to quantitate rapid changes of protein synthesis in THP-1 macrophages treated with lipopolysaccharide (LPS). For 15-min labeling, >3000 proteins were quantitated, and the synthesis of 238 proteins was significantly altered, including transcription factors and cytokines. The results demonstrated that protein synthesis was modulated to facilitate protein secretion in macrophages in response to LPS. Considering the importance of protein synthesis, this method can be extensively applied to investigate rapid changes of protein synthesis in the biological and biomedical research fields.
Asunto(s)
Proteínas/análisis , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas/síntesis química , Proteómica , Puromicina/análogos & derivados , Puromicina/química , Células THP-1RESUMEN
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Asunto(s)
Glicoproteínas/química , Espectrometría de Masas/métodos , Animales , Glicómica/métodos , Glicopéptidos/análisis , Glicosilación , Humanos , Polisacáridos/análisis , Proteómica/métodosRESUMEN
BACKGROUND: Alcohol use in pregnancy increases the risk of abnormal cardiac development, and excessive alcohol consumption in adults can induce cardiomyopathy, contractile dysfunction, and arrhythmias. Understanding molecular mechanisms underlying alcohol-induced cardiac toxicity could provide guidance in the development of therapeutic strategies. METHODS: We have performed proteomic and bioinformatic analysis to examine protein alterations globally and quantitatively in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) treated with ethanol (EtOH). Proteins in both cell lysates and extracellular culture media were systematically quantitated. RESULTS: Treatment with EtOH caused severe detrimental effects on hiPSC-CMs as indicated by significant cell death and deranged Ca2+ handling. Treatment of hiPSC-CMs with EtOH significantly affected proteins responsible for stress response (e.g., GPX1 and HSPs), ion channel-related proteins (e.g. ATP1A2), myofibril structure proteins (e.g., MYL2/3), and those involved in focal adhesion and extracellular matrix (e.g., ILK and PXN). Proteins involved in the TNF receptor-associated factor 2 signaling (e.g., CPNE1 and TNIK) were also affected by EtOH treatment. CONCLUSIONS: The observed changes in protein expression highlight the involvement of oxidative stress and dysregulation of Ca2+ handling and contraction while also implicating potential novel targets in alcohol-induced cardiotoxicity. These findings facilitate further exploration of potential mechanisms, discovery of novel biomarkers, and development of targeted therapeutics against EtOH-induced cardiotoxicity.
Asunto(s)
Calcio/metabolismo , Cardiotoxicidad/metabolismo , Etanol/efectos adversos , Proteómica , Transducción de Señal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteómica/métodos , Estrés Fisiológico/efectos de los fármacosRESUMEN
Metastasis is responsible for most cancer-related deaths, but the current clinical treatments are not effective. Recently, gold nanoparticles (AuNPs) were discovered to inhibit cancer cell migration and prevent metastasis. Rationally designed AuNPs could greatly benefit their antimigration property, but the molecular mechanisms need to be explored. Cytoskeletons are cell structural proteins that closely relate to migration, and surface receptor integrins play critical roles in controlling the organization of cytoskeletons. Herein, we developed a strategy to inhibit cancer cell migration by targeting integrins, using Arg-Gly-Asp (RGD) peptide-functionalized gold nanorods. To enhance the effect, AuNRs were further activated with 808-nm near-infrared (NIR) light to generate heat for photothermal therapy (PPTT), where the temperature was adjusted not to affect the cell viability/proliferation. Our results demonstrate changes in cell morphology, observed as cytoskeleton protrusions-i.e., lamellipodia and filopodia-were reduced after treatment. The Western blot analysis indicates the downstream effectors of integrin were attracted toward the antimigration direction. Proteomics results indicated broad perturbations in four signaling pathways, Rho GTPases, actin, microtubule, and kinases-related pathways, which are the downstream regulators of integrins. Due to the dominant role of integrins in controlling cytoskeleton, focal adhesion, actomyosin contraction, and actin and microtubule assembly have been disrupted by targeting integrins. PPTT further enhanced the remodeling of cytoskeletal proteins and decreased migration. In summary, the ability of targeting AuNRs to cancer cell integrins and the introduction of PPTT stimulated broad regulation on the cytoskeleton, which provides the evidence for a potential medical application for controlling cancer metastasis.