Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 33(12): 8899-8911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470825

RESUMEN

OBJECTIVE: This study aimed to evaluate the diagnostic performance of machine learning (ML)-based ultrasound (US) radiomics models for risk stratification of gallbladder (GB) masses. METHODS: We prospectively examined 640 pathologically confirmed GB masses obtained from 640 patients between August 2019 and October 2022 at four institutions. Radiomics features were extracted from grayscale US images and germane features were selected. Subsequently, 11 ML algorithms were separately used with the selected features to construct optimum US radiomics models for risk stratification of the GB masses. Furthermore, we compared the diagnostic performance of these models with the conventional US and contrast-enhanced US (CEUS) models. RESULTS: The optimal XGBoost-based US radiomics model for discriminating neoplastic from non-neoplastic GB lesions showed higher diagnostic performance in terms of areas under the curves (AUCs) than the conventional US model (0.822-0.853 vs. 0.642-0.706, p < 0.05) and potentially decreased unnecessary cholecystectomy rate in a speculative comparison with performing cholecystectomy for lesions sized over 10 mm (2.7-13.8% vs. 53.6-64.9%, p < 0.05) in the validation and test sets. The AUCs of the XGBoost-based US radiomics model for discriminating carcinomas from benign GB lesions were higher than the conventional US model (0.904-0.979 vs. 0.706-0.766, p < 0.05). The XGBoost-US radiomics model performed better than the CEUS model in discriminating GB carcinomas (AUC: 0.995 vs. 0.902, p = 0.011). CONCLUSIONS: The proposed ML-based US radiomics models possess the potential capacity for risk stratification of GB masses and may reduce the unnecessary cholecystectomy rate and use of CEUS. CLINICAL RELEVANCE STATEMENT: The machine learning-based ultrasound radiomics models have potential for risk stratification of gallbladder masses and may potentially reduce unnecessary cholecystectomies. KEY POINTS: • The XGBoost-based US radiomics models are useful for the risk stratification of GB masses. • The XGBoost-based US radiomics model is superior to the conventional US model for discriminating neoplastic from non-neoplastic GB lesions and may potentially decrease unnecessary cholecystectomy rate for lesions sized over 10 mm in comparison with the current consensus guideline. • The XGBoost-based US radiomics model could overmatch CEUS model in discriminating GB carcinomas from benign GB lesions.


Asunto(s)
Carcinoma , Enfermedades de la Vesícula Biliar , Neoplasias de la Vesícula Biliar , Humanos , Estudios Prospectivos , Medios de Contraste , Neoplasias de la Vesícula Biliar/diagnóstico por imagen , Aprendizaje Automático , Medición de Riesgo , Estudios Retrospectivos
2.
Eur Radiol ; 32(2): 1065-1077, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34453574

RESUMEN

OBJECTIVES: To assess methods to improve the accuracy of prognosis for clinical stage I solid lung adenocarcinoma using radiomics based on different volumes of interests (VOIs). METHODS: This retrospective study included patients with postoperative clinical stage I solid lung adenocarcinoma from two hospitals, center 1 and center 2. Three databases were generated: dataset A (training set from center 1), dataset B (internal test set from center 1), and dataset C (external validation test from center 2). Disease-free survival (DFS) data were collected. CT radiomics models were constructed based on four VOIs: gross tumor volume (GTV), 3 mm external to the tumor border (peritumoral volume [PTV]0~+3), 6 mm crossing tumor border (PTV-3~+3), and 6 mm external to the tumor border (PTV0~+6). The area under the receiver operating characteristic curve (AUC) was used to compare the model accuracies. RESULTS: A total of 334 patients were included (204 and 130 from centers 1 and 2). The model using PTV-3~+3 (AUC 0.81 [95% confidence interval {CI}: 0.75, 0.94], 0.81 [0.63, 0.90] for datasets B and C) outperformed the other three models, GTV (0.73 [0.58, 0.81], 0.73 [0.58, 0.83]), PTV0~+3 (0.76 [0.52, 0.87], 0.75 [0.60, 0.83]), and PTV0~+6 (0.72 [0.60, 0.81], 0.69 [0.59, 0.81]), in datasets B and C, all p < 0.05. CONCLUSIONS: A radiomics model based on a VOI of 6 mm crossing tumor border more accurately predicts prognosis of clinical stage I solid lung adenocarcinoma than that based on VOIs including overall tumor or external rims of 3 mm and 6 mm. KEY POINTS: • Radiomics is a useful approach to improve the accuracy of prognosis for stage I solid adenocarcinoma. • The radiomics model based on VOIs that includes 3 mm within and external to the tumor border (peritumoral volume [PTV]-3~+3) outperformed models that included either only the tumor itself or those that only included the peritumoral volume.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Pronóstico , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
3.
Eur J Nucl Med Mol Imaging ; 48(11): 3469-3481, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33829415

RESUMEN

PURPOSE: To construct multivariate radiomics models using hybrid 18F-FDG PET/MRI for distinguishing between Parkinson's disease (PD) and multiple system atrophy (MSA). METHODS: Ninety patients (60 with PD and 30 with MSA) were randomized to training and test sets in a 7:3 ratio. All patients underwent 18F-fluorodeoxyglucose (18F-FDG) PET/MRI to simultaneously obtain metabolic images (18F-FDG), structural MRI images (T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) and T2-weighted fluid-attenuated inversion recovery (T2/FLAIR)) and functional MRI images (susceptibility-weighted imaging (SWI) and apparent diffusion coefficient). Using PET and five MRI sequences, we extracted 1172 radiomics features from the putamina and caudate nuclei. The radiomics signatures were constructed with the least absolute shrinkage and selection operator algorithm in the training set, with progressive optimization through single-sequence and double-sequence radiomics models. Multivariable logistic regression analysis was used to develop a clinical-radiomics model, combining the optimal multi-sequence radiomics signature with clinical characteristics and SUV values. The diagnostic performance of the models was assessed by receiver operating characteristic and decision curve analysis (DCA). RESULTS: The radiomics signatures showed favourable diagnostic efficacy. The optimal model comprised structural (T1WI), functional (SWI) and metabolic (18F-FDG) sequences (RadscoreFDG_T1WI_SWI) with the area under curves (AUCs) of the training and test sets of 0.971 and 0.957, respectively. The integrated model, incorporating RadscoreFDG_T1WI_SWI, three clinical symptoms (disease duration, dysarthria and autonomic failure) and SUVmax, demonstrated satisfactory calibration and discrimination in the training and test sets (0.993 and 0.994, respectively). DCA indicated the highest clinical benefit of the clinical-radiomics integrated model. CONCLUSIONS: The radiomics signature with metabolic, structural and functional information provided by hybrid 18F-FDG PET/MRI may achieve promising diagnostic efficacy for distinguishing between PD and MSA. The clinical-radiomics integrated model performed best.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Fluorodesoxiglucosa F18 , Humanos , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
4.
J Magn Reson Imaging ; 53(4): 1066-1079, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33217114

RESUMEN

BACKGROUND: Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. PURPOSE: To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy. STUDY TYPE: Retrospective. POPULATION: In all, 113 HCC patients (ER, n = 58 vs. non-ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts. FIELD STRENGTH/SEQUENCE: 1.5T or 3.0T, gradient-recalled-echo in-phase T1 -weighted imaging (I-T1 WI) and opposed-phase T1 WI (O-T1 WI), fast spin-echo T2 -weighted imaging (T2 WI), spin-echo planar diffusion-weighted imaging (DWI), and gradient-recalled-echo contrast-enhanced MRI (CE-MRI). ASSESSMENT: In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic-radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established. STATISTICAL TESTS: Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA). RESULTS: The radiomics model based on I-T1 WI, O-T1 WI, T2 WI, and CE-MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598-0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756-0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577-0.907). DCA demonstrated that the combined nomogram was clinically useful. DATA CONCLUSION: The mpMRI-based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 4.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Imágenes de Resonancia Magnética Multiparamétrica , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Hepatectomía , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Imagen por Resonancia Magnética , Estudios Retrospectivos
5.
Eur Radiol ; 31(11): 8615-8627, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33877387

RESUMEN

OBJECTIVES: Pretreatment evaluation of tumor biology and microenvironment is important to predict prognosis and plan treatment. We aimed to develop nomograms based on gadoxetic acid-enhanced MRI to predict microvascular invasion (MVI), tumor differentiation, and immunoscore. METHODS: This retrospective study included 273 patients with HCC who underwent preoperative gadoxetic acid-enhanced MRI. Patients were assigned to two groups: training (N = 191) and validation (N = 82). Univariable and multivariable logistic regression analyses were performed to investigate clinical variables and MRI features' associations with MVI, tumor differentiation, and immunoscore. Nomograms were developed based on features associated with these three histopathological features in the training cohort, then validated, and evaluated. RESULTS: Predictors of MVI included tumor size, rim enhancement, capsule, percent decrease in T1 images (T1D%), standard deviation of apparent diffusion coefficient, and alanine aminotransferase levels, while capsule, peritumoral enhancement, mean relaxation time on the hepatobiliary phase (T1E), and alpha-fetoprotein levels predicted tumor differentiation. Predictors of immunoscore included the radiologic score constructed by tumor number, intratumoral vessel, margin, capsule, rim enhancement, T1D%, relaxation time on plain scan (T1P), and alpha-fetoprotein and alanine aminotransferase levels. Three nomograms achieved good concordance indexes in predicting MVI (0.754, 0.746), tumor differentiation (0.758, 0.699), and immunoscore (0.737, 0.726) in the training and validation cohorts, respectively. CONCLUSION: MRI-based nomograms effectively predict tumor behaviors in HCC and may assist clinicians in prognosis prediction and pretreatment decisions. KEY POINTS: • This study developed and validated three nomograms based on gadoxetic acid-enhanced MRI to predict MVI, tumor differentiation, and immunoscore in patients with HCC. • The pretreatment prediction of tumor microenvironment may be useful to guide accurate prognosis and planning of surgical and immunological therapies for individual patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste , Gadolinio DTPA , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Invasividad Neoplásica , Nomogramas , Estudios Retrospectivos , Microambiente Tumoral
6.
J Comput Assist Tomogr ; 45(1): 12-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33186174

RESUMEN

METHODS: Hepatic fat fractions were quantified by noncontrast (HFFnon-CE) and contrast-enhanced single-source dual-energy computed tomography in arterial phase (HFFAP), portal venous phase (HFFPVP) and equilibrium phase (HFFEP) using MMD in 19 nonalcoholic fatty liver disease patients. The fat concentration was measured on fat (water)-based images. As the standard of reference, magnetic resonance iterative decomposition of water and fat with echo asymmetry and least-squares estimation-iron quantification images were reconstructed to obtain HFF (HFFIDEAL-IQ). RESULTS: There was a strong correlation between HFFnon-CE, HFFAP, HFFPVP, HFFEP, fat concentration and HFFIDEAL-IQ (r = 0.943, 0.923, 0.942, 0.952, and 0.726) with HFFs having better correlation with HFFIDEAL-IQ. Hepatic fat fractions did not significantly differ across scanning phases. The HFFs of 3-phase contrast-enhanced computed tomography had a good consistency with HFFnon-CE. CONCLUSIONS: Hepatic fat fraction using MMD has excellent correlation with that of magnetic resonance imaging, is independent of the computed tomography scanning phases, and may be used as a routine technique for quantitative assessment of HFF.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Tomografía Computarizada por Rayos X/métodos , Tejido Adiposo/patología , Adulto , Anciano , Algoritmos , Medios de Contraste , Femenino , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios Retrospectivos , Sensibilidad y Especificidad , Agua
7.
Cardiovasc Ultrasound ; 19(1): 24, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167526

RESUMEN

BACKGROUND: The novel noninvasive pressure-strain loop (PSL) is a reliable tool that reflects myocardial work (MW). Systolic blood pressure (SBP) is the only independent factor for MW indices. However, afterload-related reference values have not been previously reported. The aim of the present study was to establish reference values for MW parameters by wide range SBP grading. METHODS: We prospectively selected healthy individuals and subjects with SBP ≥ 140 mmHg at the time of study without myocardial remodeling. MW parameters were collected and the reference values achieved were grouped by SBP in 10-mmHg. RESULTS: Significant differences were noted among the SBP-groups for global work index (GWI) and global constructive work (GCW). The majority of statistical comparisons of the differences in GWI and GCW were significant at each SBP-group. With SBP ranging from 90 to 189 mmHg, the parameters GWI and GCW tended to increase linearly with afterload. Overall, the global wasted work (GWW) tended to rise as SBP was increased, but not all of the differences noted in GWW were significant for each SBP-group. Global work efficiency (GWE) remained stable across all SBP-groups, with the exception of a slight drop noted when it exceeded 160 mmHg. CONCLUSIONS: The amount of MW but not the work efficiency varied greatly according to the different afterload. This finding cannot be ignored during clinical research or diagnosis and afterload-related reference values are required to make a reasonable judgment on the myocardial function.


Asunto(s)
Ecocardiografía , Función Ventricular Izquierda , Presión Sanguínea , Humanos , Miocardio , Valores de Referencia , Volumen Sistólico
8.
Eur J Nucl Med Mol Imaging ; 47(6): 1400-1411, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31773234

RESUMEN

PURPOSE: To develop and validate an integrated model for discriminating tumor recurrence from radiation necrosis in glioma patients. METHODS: Data from 160 pathologically confirmed glioma patients were analyzed. The diagnostic model was developed in a primary cohort (n = 112). Textural features were extracted from postoperative 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET), 11C-methionine (11C-MET) PET, and magnetic resonance images. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. Multivariable logistic regression analysis was used to develop a model for predicting tumor recurrence. The radiomics signature, quantitative PET parameters, and clinical risk factors were incorporated in the model. The clinical value of the model was then assessed in an independent validation cohort using the remaining 48 glioma patients. RESULTS: The integrated model consisting of 15 selected features was significantly associated with postoperative tumor recurrence (p < 0.001 for both primary and validation cohorts). Predictors contained in the individualized diagnosis model included the radiomics signature, the mean of tumor-background ratio (TBR) of 18F-FDG, maximum of TBR of 11C-MET PET, and patient age. The integrated model demonstrated good discrimination, with an area under the curve (AUC) of 0.988, with a 95% confidence interval (CI) of 0.975-1.000. Application in the validation cohort showed good differentiation (AUC of 0.914 and 95% CI of 0.881-0.945). Decision curve analysis showed that the integrated diagnosis model was clinically useful. CONCLUSIONS: Our developed model could be used to assist the postoperative individualized diagnosis of tumor recurrence in patients with gliomas.


Asunto(s)
Glioma , Recurrencia Local de Neoplasia , Fluorodesoxiglucosa F18 , Glioma/diagnóstico por imagen , Humanos , Necrosis , Recurrencia Local de Neoplasia/diagnóstico por imagen , Tomografía Computarizada por Rayos X
9.
BMC Cancer ; 20(1): 468, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450841

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy is a promising treatment option for potential resectable gastric cancer, but patients' responses vary. We aimed to develop and validate a radiomics score (rad_score) to predict treatment response to neoadjuvant chemotherapy and to investigate its efficacy in survival stratification. METHODS: A total of 106 patients with neoadjuvant chemotherapy before gastrectomy were included (training cohort: n = 74; validation cohort: n = 32). Radiomics features were extracted from the pre-treatment portal venous-phase CT. After feature reduction, a rad_score was established by Randomised Tree algorithm. A rad_clinical_score was constructed by integrating the rad_score with clinical variables, so was a clinical score by clinical variables only. The three scores were validated regarding their discrimination and clinical usefulness. The patients were stratified into two groups according to the score thresholds (updated with post-operative clinical variables), and their survivals were compared. RESULTS: In the validation cohort, the rad_score demonstrated a good predicting performance in treatment response to the neoadjuvant chemotherapy (AUC [95% CI] =0.82 [0.67, 0.98]), which was better than the clinical score (based on pre-operative clinical variables) without significant difference (0.62 [0.42, 0.83], P = 0.09). The rad_clinical_score could not further improve the performance of the rad_score (0.70 [0.51, 0.88], P = 0.16). Based on the thresholds of these scores, the high-score groups all achieved better survivals than the low-score groups in the whole cohort (all P < 0.001). CONCLUSION: The rad_score that we developed was effective in predicting treatment response to neoadjuvant chemotherapy and in stratifying patients with gastric cancer into different survival groups. Our proposed strategy is useful for individualised treatment planning.


Asunto(s)
Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Neoadyuvante/mortalidad , Nomogramas , Neoplasias Gástricas/mortalidad , Tomografía Computarizada por Rayos X/métodos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROC , Estudios Retrospectivos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Tasa de Supervivencia
10.
Eur Radiol ; 29(7): 3782-3790, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30903331

RESUMEN

OBJECTIVES: To demonstrate the value of single-source dual-energy computed tomography (ssDECT) imaging for discriminating microsatellite instability (MSI) from microsatellite stability (MSS) colorectal cancer (CRC). METHODS: Thirty-eight and seventy-six patients with pathologically proven MSI and MSS CRC, respectively, were retrospectively selected and compared. These patients underwent contrast-enhanced abdominal ssDECT scans before any anti-cancer treatment. Effective atomic number (Eff-Z) in precontrast phase, slope k of spectral HU curve in precontrast (k-P), arterial (k-A), venous (k-V), and delayed phase (k-D), normalized iodine concentration in arterial (NIC-A), venous (NIC-V), and delayed phase (NIC-D), of tumors in two groups were measured by two reviewers. Consistency of measurements was tested by intra-class correlation coefficients (ICC). Mann-Whitney U test or Student's t test was used to compare above values between MSI and MSS. Multivariate logistic regression was used to analyze multiple parameters. Receiver operating characteristic curves were calculated to assess diagnostic efficacies. RESULTS: Interobserver agreement was excellent (ICC > 0.80). MSI CRC had significantly lower values in all measurements (NIC-A, V, D; k-P, A, V, D; Eff-Z) than MSS CRC. For discriminating MSI from MSS CRC, the area under curve (AUC) using k-A was the highest (AUC, 0.803; sensitivity, 72.4%; specificity, 76.3%). The multivariate logistic regression (selection method, Enter) with combined ssDECT parameters (NIC-A, NIC-V, NIC-D, Eff-Z, k-P, k-A, k-V, k-D) significantly improved diagnostic capability with AUC of 0.886 (sensitivity, 81.6%; specificity, 81.6%). CONCLUSIONS: The combination of multiple parameters in ssDECT imaging by multivariate logistic regression provides relatively high diagnostic accuracy for discriminating MSI from MSS CRC. KEY POINTS: • ssDECT generates multiple parameters for discriminating CRC with MSI from MSS. • ssDECT measurements for MSI CRC were significantly lower than MSS CRC. • Combination of ssDECT parameters further improves diagnostic capability for differentiation.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Repeticiones de Microsatélite/genética , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/genética , Femenino , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos
11.
Medicine (Baltimore) ; 102(47): e35690, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38013377

RESUMEN

This study aimed to develop and validate an analysis system based on preoperative computed tomography (CT) to predict the risk stratification in pediatric malignant peripheral neuroblastic tumors (PNTs). A total of 405 patients with malignant PNTs (184 girls and 221 boys; mean age, 33.8 ±â€…29.1 months) were retrospectively evaluated between January 2010 and June 2018. Radiomic features were extracted from manually segmented tumors on preoperative CT images. Spearman's rank correlation coefficient and the least absolute shrinkage and selection operator (LASSO) were used to eliminate redundancy and select features. A risk model was built to stratify low-, intermediate-, and high-risk groups. An image-defined risk factor (IDRFs) model was developed to classify 266 patients with malignant PNTs and one or more IDRFs into high-risk and non-high-risk groups. The performance of the predictive models was evaluated with respect to accuracy (Acc) and receiver operating characteristic (ROC) curve, including the area under the ROC curve (AUC). The risk model demonstrated good discrimination capability, with an area under the curve (AUC) of 0.903 to distinguish high-risk from non-high-risk groups, and 0.747 to classify intermediate- and low-risk groups. In the IDRF-based risk model with the number of IDRFs, the AUC was 0.876 for classifying the high-risk and non-high-risk groups. Radiomic analysis based on preoperative CT images has the potential to stratify the risk of pediatric malignant PNTs. It had outstanding efficiency in distinguishing patients in the high-risk group, and this predictive model of risk stratification could assist in selecting optimal aggressive treatment options.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Masculino , Femenino , Niño , Humanos , Lactante , Preescolar , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Medición de Riesgo
12.
Dalton Trans ; 52(46): 17340-17348, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37937720

RESUMEN

As an important biomarker, microRNAs (miRNAs) play an important role in gene expression, and their detection has attracted increasing attention. In this study, a DNAzyme walker that could provide power to perform autonomous movement was designed. Based on the continuous mechanical motion characteristics of DNAzyme walker, a miRNA detection strategy for the self-assembly of AuNPs induced by the hairpin probe-guided DNAzyme walker "enzyme cleavage and walk" was established. In this strategy, DNAzyme walker continuously cleaved and walked on the hairpin probe on the surface of AuNPs to induce the continuous shedding of some segments of the hairpin probe. The remaining hairpin sequences on the surface of the AuNP pair with each other, causing the nanoparticles to self-assemble. This strategy uses the autonomous movement mechanism of DNAzyme walker to improve reaction efficiency and avoid the problem of using expensive and easily degradable proteases. Secondly, using dynamic light scattering technology as the signal output system, ultra-sensitive detection with a detection limit of 3.6 fM is achieved. In addition, this strategy has been successfully used to analyze target miRNAs in cancer cell samples.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Nanopartículas del Metal , MicroARNs , ADN Catalítico/metabolismo , Oro , Dispersión Dinámica de Luz , Límite de Detección
13.
EClinicalMedicine ; 60: 102027, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37333662

RESUMEN

Background: Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop a high-performance convolutional neural network (CNN) model (P-Net) based on a TRUS video of the entire prostate and investigate its efficacy in identifying csPCa. Methods: Between January 2021 and December 2022, this study prospectively evaluated 832 patients from four centres who underwent prostate biopsy and/or radical prostatectomy. All patients had a standardised TRUS video of the whole prostate. A two-dimensional CNN (2D P-Net) and three-dimensional CNN (3D P-Net) were constructed using the training cohort (559 patients) and tested on the internal validation cohort (140 patients) as well as on the external validation cohort (133 patients). The performance of 2D P-Net and 3D P-Net in predicting csPCa was assessed in terms of the area under the receiver operating characteristic curve (AUC), biopsy rate, and unnecessary biopsy rate, and compared with the TRUS 5-point Likert score system as well as multiparametric magnetic resonance imaging (mp-MRI) prostate imaging reporting and data system (PI-RADS) v2.1. Decision curve analyses (DCAs) were used to determine the net benefits associated with their use. The study is registered at https://www.chictr.org.cn with the unique identifier ChiCTR2200064545. Findings: The diagnostic performance of 3D P-Net (AUC: 0.85-0.89) was superior to TRUS 5-point Likert score system (AUC: 0.71-0.78, P = 0.003-0.040), and similar to mp-MRI PI-RADS v2.1 score system interpreted by experienced radiologists (AUC: 0.83-0.86, P = 0.460-0.732) and 2D P-Net (AUC: 0.79-0.86, P = 0.066-0.678) in the internal and external validation cohorts. The biopsy rate decreased from 40.3% (TRUS 5-point Likert score system) and 47.6% (mp-MRI PI-RADS v2.1 score system) to 35.5% (2D P-Net) and 34.0% (3D P-Net). The unnecessary biopsy rate decreased from 38.1% (TRUS 5-point Likert score system) and 35.2% (mp-MRI PI-RADS v2.1 score system) to 32.0% (2D P-Net) and 25.8% (3D P-Net). 3D P-Net yielded the highest net benefit according to the DCAs. Interpretation: 3D P-Net based on a prostate grayscale TRUS video achieved satisfactory performance in identifying csPCa and potentially reducing unnecessary biopsies. More studies to determine how AI models better integrate into routine practice and randomized controlled trials to show the values of these models in real clinical applications are warranted. Funding: The National Natural Science Foundation of China (Grants 82202174 and 82202153), the Science and Technology Commission of Shanghai Municipality (Grants 18441905500 and 19DZ2251100), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), Shanghai Science and Technology Innovation Action Plan (21Y11911200), and Fundamental Research Funds for the Central Universities (ZD-11-202151), Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant 2022ZSQD07).

14.
Biosens Bioelectron ; 213: 114478, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35732084

RESUMEN

The identification and detection of biomarkers in cancer cells play an essential role in the early detection of diseases, especially the detection of dual-biomarker. However, one of the most important limiting factors is how to realize the identification and labeling of biomarkers dynamically from the plasma membrane to the cytoplasm in living cells. In this study, integrated DNA triangular prism nanomachines (IDTPNs), a two-stage identification and dynamic bio-imaging strategy, recognize biomarkers from the plasma membrane to the cytoplasm have been designed. DNA triangular prism (DTP) was selected to act as a delivery platform with the aptamer Sgc8c and P53 modified on the side as the recognition molecules. Through the specific recognition of aptamers and the superior internalization of DTP, the IDTPNs realize the dynamic responses to PTK7 and p53 from the membrane to the cytoplasm in living cells. It is proved that the IDTPNs can be used for dynamic dual-biomarker recognition and bio-image from the surface to the inside of tumor cells automatically. Therefore, the strategy we developed provides a reliable platform for tumor diagnosis and biomarker research.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/metabolismo , Biomarcadores , Línea Celular Tumoral , ADN , Proteína p53 Supresora de Tumor/genética
15.
EJNMMI Phys ; 9(1): 5, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099646

RESUMEN

BACKGROUND: To evaluate two respiratory correction methods for abdominal PET/MRI images and further to analyse the effects on standard uptake values (SUVs) of respiratory motion correction, 17 patients with 25 abdominal lesions on 18F-FDG PET/CT were scanned with PET/MRI. PET images were reconstructed using end-expiratory respiratory gating and multi-bin respiratory gating. Meanwhile, full data and the first 3 min and 20 s of data acquired both without respiratory gating were reconstructed for evaluation. Five parameters, including the SUVmax and SUVmean in the lesions, the SUVmean and standard deviation (SD) in the background, and the signal-to-noise ratio (SNR), were calculated and used for statistical comparisons. The differences in multi-bin respiratory gating and reconstruction of full data, relative to the reconstruction of the first 3 min and 20 s of data acquired, were calculated. RESULTS: Compared with PET/CT, the longer scanning time of abdominal PET/MRI makes respiratory motion correction necessary. The multi-bin respiratory gating correction could reduce the PET image blur and increase the SUVmax (11.98%) and SUVmean (13.12%) of the lesions significantly (p = 0.00), which was much more effective than end-expiratory respiratory gating for abdominal PET/MRI. The added value of SUVmax caused by respiratory motion correction has no significant difference compared with that caused by count loss with the correction (p = 0.39), which was rarely reported by previous studies. CONCLUSION: Based on the current parameters, the method of multi-bin respiratory gating was more effective for respiratory motion correction in abdominal PET/MRI in comparisons with the method of end-respiratory gating. However, the increased noise in gated images, due to the fact that PET data get discarded, is partly responsible for the increase in SUVmax.

16.
Front Oncol ; 11: 661763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336657

RESUMEN

OBJECTIVES: To identify the relatively invariable radiomics features as essential characteristics during the growth process of metastatic pulmonary nodules with a diameter of 1 cm or smaller from colorectal cancer (CRC). METHODS: Three hundred and twenty lung nodules were enrolled in this study (200 CRC metastatic nodules in the training cohort, 60 benign nodules in the verification cohort 1, 60 CRC metastatic nodules in the verification cohort 2). All the nodules were divided into four groups according to the maximum diameter: 0 to 0.25 cm, 0.26 to 0.50 cm, 0.51 to 0.75 cm, 0.76 to 1.0 cm. These pulmonary nodules were manually outlined in computed tomography (CT) images with ITK-SNAP software, and 1724 radiomics features were extracted. Kruskal-Wallis test was performed to compare the four different levels of nodules. Cross-validation was used to verify the results. The Spearman rank correlation coefficient is calculated to evaluate the correlation between features. RESULTS: In training cohort, 90 features remained stable during the growth process of metastasis nodules. In verification cohort 1, 293 features remained stable during the growth process of benign nodules. In verification cohort 2, 118 features remained stable during the growth process of metastasis nodules. It is concluded that 20 features remained stable in metastatic nodules (training cohort and verification cohort 2) but not stable in benign nodules (verification cohort 1). Through the cross-validation (n=100), 11 features remained stable more than 90 times. CONCLUSIONS: This study suggests that a small number of radiomics features from CRC metastatic pulmonary nodules remain relatively stable from small to large, and they do not remain stable in benign nodules. These stable features may reflect the essential characteristics of metastatic nodules and become a valuable point for identifying metastatic pulmonary nodules from benign nodules.

17.
EBioMedicine ; 74: 103684, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34773890

RESUMEN

BACKGROUND: Preoperative determination of breast cancer molecular subtypes facilitates individualized treatment plan-making and improves patient prognosis. We aimed to develop an assembled convolutional neural network (ACNN) model for the preoperative prediction of molecular subtypes using multimodal ultrasound (US) images. METHODS: This multicentre study prospectively evaluated a dataset of greyscale US, colour Doppler flow imaging (CDFI), and shear-wave elastography (SWE) images in 807 patients with 818 breast cancers from November 2016 to February 2021. The St. Gallen molecular subtypes of breast cancer were confirmed by postoperative immunohistochemical examination. The monomodal ACNN model based on greyscale US images, the dual-modal ACNN model based on greyscale US and CDFI images, and the multimodal ACNN model based on greyscale US and CDFI as well as SWE images were constructed in the training cohort. The performances of three ACNN models in predicting four- and five-classification molecular subtypes and identifying triple negative from non-triple negative subtypes were assessed and compared. The performance of the multimodal ACNN was also compared with preoperative core needle biopsy (CNB). FINDING: The performance of the multimodal ACNN model (macroaverage area under the curve [AUC]: 0.89-0.96) was superior to that of the dual-modal ACNN model (macroaverage AUC: 0.81-0.84) and the monomodal ACNN model (macroaverage AUC: 0.73-0.75) in predicting four-classification breast cancer molecular subtypes, which was also better than that of preoperative CNB (AUC: 0.89-0.99 vs. 0.67-0.82, p < 0.05). In addition, the multimodal ACNN model outperformed the other two ACNN models in predicting five-classification molecular subtypes (AUC: 0.87-0.94 vs. 0.78-0.81 vs. 0.71-0.78) and identifying triple negative from non-triple negative breast cancers (AUC: 0.934-0.970 vs. 0.688-0.830 vs. 0.536-0.650, p < 0.05). Moreover, the multimodal ACNN model obtained satisfactory prediction performance for both T1 and non-T1 lesions (AUC: 0.957-0.958 and 0.932-0.985). INTERPRETATION: The multimodal US-based ACNN model is a potential noninvasive decision-making method for the management of patients with breast cancer in clinical practice. FUNDING: This work was supported in part by the National Natural Science Foundation of China (Grants 81725008 and 81927801), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), and the Science and Technology Commission of Shanghai Municipality (Grants 19441903200, 19DZ2251100, and 21Y11910800).


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biopsia con Aguja Gruesa , Neoplasias de la Mama/patología , China , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Imagen Multimodal , Redes Neurales de la Computación , Estudios Prospectivos , Ultrasonografía Doppler en Color , Adulto Joven
18.
Ann Transl Med ; 9(19): 1496, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34805358

RESUMEN

BACKGROUND: Mutation screening for gastrointestinal stromal tumor (GIST) is crucial and the c kit gene (KIT) exon 11 mutation is the most common type. This study aimed to explore the associations between GIST with KIT exon 11 mutation and contrast-enhanced computed tomography (CT) images. METHODS: Pathologically proven GISTs with definitive genotype testing results in our hospital were retrospectively included. Abdominal contrast-enhanced CT images were analyzed. Conventional CT image features and radiomic features were recorded and extracted to build the following models: model [CT], model [radiomic + clinic] and model [CT + radiomic + clinic]. The diagnostic performances of GISTs with KIT exon 11 mutation and KIT exon 11 deletion involving codons 557-558 were evaluated. RESULTS: In total, 327 GISTs (255 with KIT exon 11 mutation, and 73 with KIT exon 11 mutation deletion involving codons 557-558) were included. Significant CT features were found for GISTs with KIT exon 11 mutation. The area under curves (AUCs) of the models for KIT exon 11 mutation were 0.7158, 0.7530, and 0.8375 in the training cohort, and 0.6777, 0.7349, and 0.8105 in validation cohort, respectively. The AUCs of the models for KIT exon 11 mutation deletion involving codons 557-558 were 0.7155, 8621, and 0.8691 in the training cohort, and 0.7099, 0.8355, and 0.8488 in the validation cohort, respectively. The model [CT + radiomic + clinic] demonstrated the highest AUCs for prediction of KIT exon 11 mutation and those with deletion involving codons 557-558 (P<0.05), respectively. The model [radiomic + clinic] showed higher diagnostic performance than model [CT] significantly. CONCLUSIONS: Our results demonstrated the associations between GIST with KIT exon 11 mutation and contrast-enhanced CT images. We found combing conventional image analysis and texture analysis is a useful tool to distinguish GIST with KIT exon 11 mutation. CT radiogenomics exhibited good application potential in predict the KIT exon 11 mutation of GIST.

19.
Front Oncol ; 11: 569515, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718130

RESUMEN

BACKGROUND: Previous studies demonstrated a promising prognosis in advanced hepatocellular carcinoma (HCC) patients who underwent surgery, yet a consensus of which population would benefit most from surgery is still unreached. METHOD: A total of 496 advanced HCC patients who initially underwent liver resection were consecutively collected. Least absolute shrinkage and selection operator (LASSO) regression was performed to select significant pre-operative factors for recurrence-free survival (RFS). A prognostic score constructed from these factors was used to divide patients into different risk groups. Survivals were compared between groups with log-rank test. The area under curves (AUC) of the time-dependent receiver operating characteristics was used to evaluate the predictive accuracy of prognostic score. RESULT: For the entire cohort, the median overall survival (OS) was 23.0 months and the median RFS was 12.1 months. Patients were divided into two risk groups according to the prognostic score constructed with ALBI score, tumor size, tumor-invaded liver segments, gamma-glutamyl transpeptidase, alpha fetoprotein, and portal vein tumor thrombus stage. The median RFS of the low-risk group was significantly longer than that of the high-risk group in both the training (10.1 vs 2.9 months, P<0.001) and the validation groups (13.7 vs 4.6 months, P=0.002). The AUCs of the prognostic score in predicting survival were 0.70 to 0.71 in the training group and 0.71 to 0.72 in the validation group. CONCLUSION: Surgery could provide promising survival for HCC patients at an advanced stage. Our developed pre-operative prognostic score is effective in identifying advanced-stage HCC patients with better survival benefit for surgery.

20.
Transl Oncol ; 14(1): 100866, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33074127

RESUMEN

OBJECTIVES: To develop a radiomics algorithm, improving the performance of detecting recurrence, based on posttreatment CT images within one month and at suspicious time during follow-up. MATERIALS AND METHODS: A total of 114 patients with 228 images were randomly split (7:3) into training and validation cohort. Radiomics algorithm was trained using machine learning, based on difference-in-difference (DD) features extracted from tumor and liver regions of interest on posttreatment CTs within one month after resection or ablation and when suspected recurrent lesion was observed but cannot be confirmed as HCC during follow-up. The performance was evaluated by area under the receiver operating characteristic curve (AUC) and was compared among radiomics algorithm, change of alpha-fetoprotein (AFP) and combined model of both. Five-folded cross validation (CV) was used to present the training error. RESULTS: A radiomics algorithm was established by 34 DD features selected by random forest and multivariable logistic models and showed a better AUC than that of change of AFP (0.89 [95% CI: 0.78, 1.00] vs 0.63 [95% CI: 0.42, 0.84], P = .04) and similar with the combined model in detecting recurrence in the validation set. Five-folded CV error in the validation cohort was 21% for the algorithm and 26% for the changes of AFP. CONCLUSIONS: The algorithm integrated radiomic features of posttreatment CT showed superior performance to that of conventional AFP and may act as a potential marker in the early detecting recurrence of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA