Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39409186

RESUMEN

Dengue virus (DENV) infection, prevalent in tropical and subtropical regions, can progress to dengue hemorrhagic fever (DHF), which increases mortality during secondary infections. DHF is characterized by endothelial damage and vascular leakage. Despite its severity, no specific antiviral treatments exist, and the viral factors responsible for endothelial damage remain unclear. This study examines the role of the DENV envelope protein domain III (EIII) in inducing endothelial apoptosis using a mouse model. Additionally, we aim to explore whether cell death-inducing pathways could serve as drug targets to ameliorate EIII-induced endothelial injury and hemorrhage. In vitro experiments using human endothelial HMEC-1 cells demonstrated that both recombinant EIII (rEIII) and DENV markedly induced caspase-3-mediated endothelial cell death, an effect that was attenuated by co-treatment with chondroitin sulfate B (CSB), N-acetyl cysteine (NAC), and the caspase-3 inhibitor z-DEVD-FMK. In vivo, sequential injections of rEIII and anti-platelet immunoglobulin in mice, designed to mimic the clinical phase of DHF with peak viremia followed by an increase in DENV-induced Ig, including autoantibodies, revealed that these dual treatments markedly triggered caspase-3-dependent apoptosis in vascular endothelial cells at hemorrhage sites. Treatments with z-DEVD-FMK effectively reduced DHF-like symptoms such as thrombocytopenia, hemorrhage, inflammation, hypercoagulation, and endothelial damage. Additionally, CSB and NAC alleviated hemorrhagic symptoms in the mice. These results suggest that targeting EIII, reactive oxygen species, and caspase-3-mediated apoptosis could offer potential therapeutic strategies for addressing EIII-induced hemorrhagic pathogenesis.


Asunto(s)
Apoptosis , Virus del Dengue , Células Endoteliales , Hemorragia , Dengue Grave , Proteínas del Envoltorio Viral , Animales , Ratones , Humanos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Apoptosis/efectos de los fármacos , Dengue Grave/patología , Dengue Grave/tratamiento farmacológico , Hemorragia/tratamiento farmacológico , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Dengue/tratamiento farmacológico , Dengue/patología , Línea Celular , Muerte Celular/efectos de los fármacos
2.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791301

RESUMEN

Psychological stress increases risk of gastrointestinal tract diseases. However, the mechanism behind stress-induced gastrointestinal injury is not well understood. The objective of our study is to elucidate the putative mechanism of stress-induced gastrointestinal injury and develop an intervention strategy. To achieve this, we employed the restraint stress mouse model, a well-established method to study the pathophysiological changes associated with psychological stress in mice. By orally administering gut-nonabsorbable Evans blue dye and monitoring its plasma levels, we were able to track the progression of gastrointestinal injury in live mice. Additionally, flow cytometry was utilized to assess the viability, death, and inflammatory status of splenic leukocytes, providing insights into the stress-induced impact on the innate immune system associated with stress-induced gastrointestinal injury. Our findings reveal that neutrophils represent the primary innate immune leukocyte lineage responsible for stress-induced inflammation. Splenic neutrophils exhibited elevated expression levels of the pro-inflammatory cytokine IL-1, cellular reactive oxygen species, mitochondrial burden, and cell death following stress challenge compared to other innate immune cells such as macrophages, monocytes, and dendritic cells. Regulated cell death analysis indicated that NETosis is the predominant stress-induced cell death response among other analyzed regulated cell death pathways. NETosis culminates in the formation and release of neutrophil extracellular traps, which play a crucial role in modulating inflammation by binding to pathogens. Treatment with the NETosis inhibitor GSK484 rescued stress-induced neutrophil extracellular trap release and gastrointestinal injury, highlighting the involvement of neutrophil extracellular traps in stress-induced gastrointestinal inflammation. Our results suggest that neutrophil NETosis could serve as a promising drug target for managing psychological stress-induced gastrointestinal injuries.


Asunto(s)
Inflamación , Neutrófilos , Restricción Física , Estrés Psicológico , Animales , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/inmunología , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Trampas Extracelulares/metabolismo , Enfermedades Gastrointestinales/etiología , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273376

RESUMEN

The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.


Asunto(s)
Frío , Inmunoglobulina G , Extractos Vegetales , Raíces de Plantas , Salvia miltiorrhiza , Animales , Salvia miltiorrhiza/química , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inmunoglobulina G/sangre , Raíces de Plantas/química , Masculino , Abietanos/farmacología , Terapia de Inmunosupresión/métodos , Tolerancia Inmunológica/efectos de los fármacos
4.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298220

RESUMEN

Dengue hemorrhagic fever (DHF) is a severe form of dengue virus (DENV) infection that can lead to abnormal immune responses, endothelial vascular dysfunction, and hemorrhage pathogenesis. The virion-associated envelope protein domain III (EIII) is thought to play a role in the virulence of DENV by damaging endothelial cells. However, it is unclear whether EIII-coated nanoparticles simulating DENV virus particles could cause a more severe pathogenesis than soluble EIII alone. This study aimed to investigate whether EIII-coated silica nanoparticles (EIII-SNPs) could elicit greater cytotoxicity in endothelial cells and hemorrhage pathogenesis in mice compared to EIII or silica nanoparticles alone. The main methods included in vitro assays to assess cytotoxicity and in vivo experiments to examine hemorrhage pathogenesis in mice. EIII-SNPs induced greater endothelial cytotoxicity in vitro than EIII or silica nanoparticles alone. Two-hit combined treatment with EIII-SNPs and antiplatelet antibodies to simulate DHF hemorrhage pathogenesis during secondary DENV infections resulted in higher endothelial cytotoxicity than either treatment alone. In mouse experiments, two-hit combined treatment with EIII-SNPs and antiplatelet antibodies resulted in more severe hemorrhage pathogenesis compared to single treatments of EIII, EIII-SNPs, or antiplatelet antibodies alone. These findings suggest that EIII-coated nanoparticles are more cytotoxic than soluble EIII and could be used to develop a tentative dengue two-hit hemorrhage pathogenesis model in mice. Additionally, our results indicated that EIII-containing DENV particles could potentially exacerbate hemorrhage pathogenesis in DHF patients who have antiplatelet antibodies, highlighting the need for further research on the potential role of EIII in DHF pathogenesis.


Asunto(s)
Virus del Dengue , Dengue , Animales , Ratones , Anticuerpos Antivirales , Dominios Proteicos , Células Endoteliales/metabolismo , Hemorragia/etiología
5.
Sensors (Basel) ; 22(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146307

RESUMEN

Inventory is the basis of business activities; inventory management helps industries keep their inventories stocked with reasonable quantities, which ensures consumers demand while minimizing storage costs. The traditional manual inventory management has low efficiency and a high labor cost. In this paper, we used improved YOLOv3 to detect the cups stored on the warehouse shelves and counted their numbers to realize automated inventory management. The warehouse images are collected by the camera and transmitted to the industrial computer, which runs the YOLOv3 network. There are three feature maps in YOLOv3, the two smaller feature maps and the structure behind them are removed, and the k-means algorithm is used to optimize the default anchor size. Moreover, the detection range is limited to a specified area. Experiments show that, by eliminating those two feature maps, the network parameter is reduced from 235 MB to 212 MB, and detection FPS is improved from 48.15 to 54.88 while mAP is improved from 95.65% to 96.65% on our test dataset. The new anchors obtained by the k-means algorithm further improve the mAP to 96.82%. With those improvements, the average error rate of detection is reduced to 1.61%. Restricted detection areas eliminate irrelevant items to ensure the high accuracy of the detection result. The accurately counted number of cups and its change provide significant data for inventory management.

6.
Pharm Res ; 36(1): 20, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30511187

RESUMEN

PURPOSE: The pH-responsive copolymer micelles are widely used as carriers in drug delivery system, but there are few micro-level mechanistically explorations on the pH-triggered drug release. Here we elucidate the relationship between drug release behavior of four/six-arms star copolymer micelles and the copolymer structures. METHOD: The net cumulative drug release percentage (En) was taken as the dependent variables, block unit autocorrelation descriptors as independent variables. The quantitative structure-property relationship models of drug release from block copolymers were developed at pH 7.4 and 5.0 of two periods (stage I: 0~12 h, stage II: 12~96 h). RESULTS: The models built are of good fitting ability, internal predictive ability, stability and statistically significance. Drug diffusion is mainly influenced by the intra-block force, and micellar erosion by inter-block force. At pH 5.0, lowest unoccupied molecular orbital energy of copolymer unit is the main factor influencing the En. Stage I of drug release is affected by hydrophobic property and stage II by regional polar of copolymer molecules. CONCLUSION: The models present good performance, factors affecting drug release behavior at different pH conditions can offer guidance for the design of copolymer structures to control the drug release behavior of micelles in a targeted and quantitatively way.


Asunto(s)
Micelas , Polímeros/química , Portadores de Fármacos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Relación Estructura-Actividad Cuantitativa
7.
Am J Cancer Res ; 13(10): 4903-4917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970347

RESUMEN

The poor prognosis of hepatocellular carcinoma (HCC) was ascribed to metastasis. Targeted therapy aiming at the molecules along the metastatic pathway is a promising therapeutic strategy. Among them, hydrogen peroxide inducible clone-5 (Hic-5) is highlighted. Hic-5, discovered as a reactive oxygen species (ROS)-inducible gene, was identified to be an adaptor protein in focal adhesion and a critical signaling mediator upregulated in various cancers including HCC. Moreover, Hic-5 may regulate epithelial-mesenchymal transition (EMT) transcription factor Snail and its downstream mesenchymal genes including fibronectin and matrix metalloproteinase-9 required for migration and invasion of HCC. However, the comprehensive Hic-5-mediated pathway was not established and whether Hic-5 can be a target for preventing HCC progression has not been validated in vivo. Using whole-transcriptome mRNA sequencing, we found reactive oxygen species modulator (ROMO) and ZNF395 were upregulated by Hic-5 in a patient-derived HCC cell line, HCC372. Whereas ROMO was involved in Hic-5-mediated ROS signaling, ZNF395 locates downstream of Snail for mesenchymal genes expression required for cell migration. Also, ZNF395 but not ROMO was upregulated by Hic-5 for migration in another patient-derived HCC cell line, HCC374. Further, by in vivo knock down of Hic-5 using the Stable Nucleic Acids Lipid nanoparticles (SNALP)-carried Hic-5 siRNA, progression of HCC372 and HCC374 in SCID mice was prevented, coupled with the decrease of the downstream mesenchymal genes. Our study provides the preclinical evidence that targeting Hic-5 is potentially able to prevent the progression of HCCs with Hic-5 overexpression.

8.
Biomedicines ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35625759

RESUMEN

Cholangiocarcinoma (CCA) is the second most common primary liver cancer with poor prognosis. The deregulation of a lot of oncogenic signaling molecules, such as receptor tyrosine kinases (RTKs), has been found to be associated with CCA progression. However, RTKs-based target therapy showed limited improvement suggesting a need to search for alternative targets for preventing CCA progression. To address this issue, we screened the oncogenic signal molecules upregulated in surgical tissues of CCAs. Interestingly, over-expression of hydrogen peroxide inducible clone-5 (Hic-5) coupled with over-activation of Src, AKT, JNK were observed in 50% of the cholangiocarcinoma with metastatic potential. To investigate whether these molecules may work together to trigger metastatic signaling, their up-and-down relationship was examined in a well-established cholangiocarcinoma cell line, HuCCT1. Src inhibitors PP1 (IC50, 13.4 µM) and dasatinib (IC50, 0.1 µM) significantly decreased both phosphorylated AKT (phosphor-AKT Thr450) and Hic-5 in HuCCT1. In addition, a knockdown of Hic-5 effectively suppressed activation of Src, JNK, and AKT. These implicated a positive cross-talk occurred between Hic-5 and Src for triggering AKT activation. Further, depletion of Hic-5 and inhibition of Src suppressed HuccT1 cell migration in a dose-dependent manner. Remarkably, prior transfection of Hic-5 siRNA for 24 h followed by treatment with PP1 or dasatinib for 24 h resulted in additive suppression of HuCCT1 migration. This suggested that a promising combinatory efficacy can be achieved by depletion of Hic-5 coupled with inhibition of Src. In the future, target therapy against CCA progression by co-targeting Hic-5 and Src may be successfully developed in vivo.

9.
Pharmaceutics ; 14(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36559193

RESUMEN

Cholangiocarcinoma (CCA) is a malignant neoplasm of the bile ducts, being the second most common type of cancer in the liver, and most patients are diagnosed at a late stage with poor prognosis. Targeted therapy aiming at receptors tyrosine kinases (RTKs) such as c-Met or EGFR have been developed but with unsatisfactory outcomes. In our recent report, we found several oncogenic molecules downstream of RTKs, including hydrogen peroxide clone-5 (Hic-5), Src, AKT and JNK, were elevated in tissues of a significant portion of metastatic CCAs. By inhibitor studies and a knockdown approach, these molecules were found to be within the same signal cascade responsible for the migration of HuCCT1 cells, a conventionally used CCA cell line. Herein, we also found Src inhibitor dasatinib and Hic-5 siRNA corporately suppressed HuCCT1 cell invasion. Moreover, dasatinib inhibited the progression of the HuCCT1 tumor on SCID mice skin coupled with decreasing the expression of Hic-5 and EGFR and the activities of Src, AKT and JNK. In addition, we found a glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and several cytoskeletal molecules such as tubulin and cofilin were dramatically decreased after a long-term treatment of the HuCCT1 tumor with a high dose of dasatinib. Specifically, GAPDH was shown to be a downstream effector of the Hic-5/Src/AKT cascade involved in HuCCT1 cell migration. On the other hand, TFK1, another CCA cell line without Hic-5 expression, exhibited very low motility, whereas an ectopic Hic-5 expression enhanced the activation of Src and AKT and marginally increased TFK1 migration. In the future, it is tempting to investigate whether cotargeting Src, Hic-5 and/or GAPDH is efficient for preventing CCA progression in future clinical trials.

10.
Mol Vis ; 17: 1564-76, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21738386

RESUMEN

PURPOSE: Our previous report demonstrated that ethambutol (EMB) might induce cytoplasmic vacuolization and reduce the uptake of photoreceptor rod outer segments (ROS) in retinal pigment epithelium (RPE) cells, which are mediated via a protein kinase C (PKC)-dependent pathway. In the present study, we sought to identify the PKC isozyme(s) involved. METHODS: EMB-induced cytoplasmic vacuolization and uptake of ROS were observed under a phase contrast microscope. Western blots were performed to observe the membrane translocation of PKC isozymes and cytoplasmic release of cathepsin D. Quantitative PCR were performed to analyze gene expression of PKCδ. Human RPE cell line RPE50 and ARPE19 cells were pretreated with specific inhibitors or transfected with shRNAs of various PKC isozymes, including PKCα, ß, ε, γ, and δ, to examine whether EMB-induced toxic effects were prevented. RESULTS: In RPE50 cells, gene expression of PKCδ on both mRNA and protein levels was induced by EMB within 30 min to 3 h. EMB-induced cytoplasmic vacuolization in both RPE50 and ARPE19 cells was prevented by pretreating the cells with a specific inhibitor of PKCδ, Rottlerin, or depletion of PKCδ by shRNA. EMB-triggered reduction of ROS uptake was also significantly suppressed by pretreatment with Rottlerin, or depletion of PKCδ by shRNA technology. In contrast, pretreatment of the cells with specific inhibitors of PKCα, ß, ε, or γ, or depletion of PKCα or ß didn't influence the aforementioned EMB-triggered toxic effects. In addition, in RPE50, EMB induced the release of lysosomal enzyme cathepsin D into cytosol within 30 min to 6 h, which was also prevented by Rottlerin. CONCLUSIONS: EMB-induced vacuole formation, cytoplasmic release of cathepsin D, and reduction of phagocytosis in RPE are intimately correlated and regulated by the PKCδ signal pathway.


Asunto(s)
Antituberculosos/efectos adversos , Células Epiteliales/efectos de los fármacos , Etambutol/efectos adversos , Isoenzimas/metabolismo , Proteína Quinasa C-delta/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Segmento Externo de la Célula en Bastón/efectos de los fármacos , Transducción de Señal , Acetofenonas/farmacología , Benzopiranos/farmacología , Western Blotting , Catepsina D/análisis , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Microscopía , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Segmento Externo de la Célula en Bastón/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 8): o2070, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22091094

RESUMEN

In the title compound, C(18)H(25)N(2) (+)·NO(3) (-), the dihedral angle between the pyridine rings is 19.06 (10)°. In the crystal, the ions are linked into a three-dimensional network by N-H⋯O and C-H⋯O hydrogen-bonding inter-actions.

12.
Tzu Chi Med J ; 33(4): 332-338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760627

RESUMEN

Targeted therapy aiming at the metastatic signal pathway, such as that triggered by receptor tyrosine kinase (RTK), for the prevention of tumor progression is promising. However, RTK-based targeted therapy frequently suffered from drug resistance due to the co-expression of multiple growth factor receptors that may raise compensatory secondary signaling and acquired mutations after treatment. One alternative strategy is to manipulate the common negative regulators of the RTK signaling. Among them, Raf kinase inhibitory protein (RKIP) is highlighted and focused on this review. RKIP can associate with Raf-1, thus suppressing the downstream mitogen-activated protein kinase (MAPK) cascade. RKIP also negatively regulates other metastatic signal molecules including NF-κB, STAT3, and NOTCH1. In general, RKIP achieves this task via associating and blocking the activity of the critical molecules on upstream of the aforementioned pathways. One novel RKIP-related signaling involves reactive oxygen species (ROS). In our recent report, we found that PKCδ-mediated ROS generation may interfere with the association of RKIP with heat shock protein 60 (HSP60)/MAPK complex via oxidation of HSP60 triggered by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate. The departure of RKIP may impact the downstream MAPK in two aspects. One is to trigger the Mt→cytosol translocation of HSP60 coupled with MAPKs. The other is to change the conformation of HSP60, favoring more efficient activation of the associated MAPK by upstream kinases in cytosol. It is worthy of investigating whether various RTKs capable of generating ROS can drive metastatic signaling via affecting RKIP in the same manner.

13.
Front Immunol ; 12: 618577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815373

RESUMEN

Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3-/- and Casp1-/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.


Asunto(s)
Trampas Extracelulares/inmunología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dominios y Motivos de Interacción de Proteínas/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Línea Celular , Dengue/inmunología , Dengue/metabolismo , Dengue/virología , Virus del Dengue/inmunología , Inmunofenotipificación , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Proteínas Recombinantes , Proteínas del Envoltorio Viral/química
14.
Cells ; 10(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34571852

RESUMEN

SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.


Asunto(s)
Carcinoma Hepatocelular/genética , Factores de Transcripción de la Familia Snail/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Ciclooxigenasa 2/metabolismo , Fibronectinas/metabolismo , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Células Madre Mesenquimatosas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/fisiología , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
15.
Free Radic Biol Med ; 163: 69-87, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307168

RESUMEN

Both protein kinase C (PKC) and reactive oxygen species (ROS) are well-known signaling messengers cross-talking with each other to activate mitogen-activated protein kinases (MAPKs) for progression of hepatocellular carcinoma (HCC). However, the underlying mechanisms are not well elucidated. Especially, whether mitochondrial ROS (mtROS) is involved and how it triggers MAPK signaling are intriguing. In this study, we found mtROS generation and phosphorylation of MAPKs were mediated by PKCδ in HCCs treated with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Heat shock protein 60 (HSP60), one of the chaperones in mitochondria was the major protein oxidized in TPA-treated HCCs. Moreover, depletion of HSP60 or expression of HSP60 cysteine mutant prevented TPA-induced phosphorylation of MAPKs. To delineate how HSP60 mediated MAPK activation, the role of Raf kinase inhibitor protein (RKIP), a negative regulator of MAPK, was investigated. TPA dissociated RKIP from HSP60 in both mitochondria and cytosol, concurrently with translocation of HSP60 and MAPK from mitochondria to cytosol, which was associated with robust phosphorylation of MAPKs in the cytosol. Moreover, TPA induced opposite phenotypical changes of HCCs, G1 cell cycle arrest, and cell migration, which were prevented by mtROS scavengers and depletion of PKCδ and HSP60. Consistently, TPA increased the migration-related genes, hydrogen peroxide inducible clone5, matrix metalloproteinase-1/3, lamininγ2, and suppressed the cell cycle regulator cyclin E1 (CCNE1) via PKCδ/mtROS/HSP60/MAPK-axis. Finally, c-jun and c-fos were required for TPA-induced expression of the migration-related genes and a novel microRNA, miR-6134, was responsible for TPA-induced suppression of CCNE1. In conclusion, PKCδ cross-talked with mtROS to trigger HSP60 oxidation for release of RKIP to activate MAPK, regulating gene expression for migration, and G1 cell cycle arrest in HCC. Targeted therapy aiming at key players like PKCδ, RKIP, and HSP60 is promising for preventing HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Chaperonina 60/genética , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Sistema de Señalización de MAP Quinasas , Mitocondrias/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteína Quinasa C-delta , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol
16.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 7): o1807, 2010 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-21588016

RESUMEN

The title compound, C(20)H(15)N(2) (+)·Cl(-), was prepared by the reaction of benzil with o-phenyl-enediamine in refluxing ethanol and then crystallized in 5% hydro-chloric acid. The two phenyl rings are oriented at dihedral angles of 50.93 (8) and 50.28 (8)° with respect to the quinoxalin-1-ium ring system. The dihedral angle between the two phenyl rings is 56.71 (10)°. In the crystal, the cations and anions are linked by N-H⋯Cl and C-H⋯Cl inter-actions, forming chains along the b axis.

17.
Ci Ji Yi Xue Za Zhi ; 32(1): 1-4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32110512

RESUMEN

The poor prognosis of cancers such as hepatocellular carcinoma is due to high recurrence rate mainly caused by metastasis. Target therapy aiming at critical signal molecules within these pathways is one of the promising strategies for the prevention of metastasis. Hydrogen peroxide-inducible clone-5 (Hic-5), which belongs to the paxillin superfamily, is emerging as a potential target along the metastatic signaling pathway. Hic-5 and paxillin share similar structural features; however, there are a lot of different biochemical properties between them, including tissue-specific distribution, regulation of gene expression, critical signal cascade, and the impacts on cellular phenotypes. This review focus on the recent studies of Hic-5 related to its impacts on signal transduction and transcription responsible for tumor progression. Hic-5 may regulate mitogen-activated protein kinase cascade for cell migration and invasion in various systems. Hic-5 can mediate transforming growth factor-ß1-induced epithelial-mesenchymal transition (EMT) via RhoA- and Src-dependent signaling. Moreover, Hic-5 plays a central role in a positive feedback Hic-5-NADPH oxidase-ROS-JNK signal cascade. This sustained signaling is required for regulating EMT-related genes including E-cadherin, Snail, MMP9, and Zeb-1. In addition, Hic-5 can be a transcription coregulatory factor for a lot of nuclear receptors. Owing to the critical role of Hic-5 in signal transduction and transcription responsible for tumor progression, it can be a potential therapeutic target for the prevention of tumor metastasis.

18.
J Surg Res ; 153(2): 268-73, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18708190

RESUMEN

OBJECTIVE: Partial face composite tissue allotransplantation was recently achieved in a human subject. However, the side effects of long-term immunosuppression and chronic rejection area still need concerning. This preliminary study investigated the reproducibility of swine hemi-facial transplantation for preclinical studies. MATERIALS AND METHODS: Eleven out-bred miniature swine underwent hemi-facial transplant. The hemi-facial orthotopic transplant consisted of ear cartilage, auricular nerve, parotid gland and lymphoid tissue, muscle with surrounding hemi-facial skin paddle supplied by the carotid artery, and external jugular vein transplanted to recipient swine. Three different experimental designs were studied, as follows: group I (n = 4): autologous hemi-facial transplantation as a normal control; group II (n = 4): hemi-facial allotransplantation without treatment; group III (n = 3): hemi-facial allotransplantation with cyclosporine-A treatment for 4 wk. The transplanted face was observed daily for signs of rejection. Biopsy of donor skin, gland lymphoid tissue, and cartilage were obtained at specified predetermined time (d 7, 14, 28), or at the time of clinically evident rejection. RESULTS: The results indicated the survival of group I following autologous hemi-facial transplant was 100% and indefinite until sacrifice. Group II without treatment as the controls revealed allograft rejection by d 7 to 28. The allograft with short-term cyclosporine-A treatment revealed delayed rejection by d 38 to 49 postoperatively. The histological examination in group I revealed abundant lymphocyte infiltration, especially in lymphoid gland and alloskin at 1 wk and sacrifice. In contrast, the cyclosporine treatment group showed no significant rejection signs in 4 wk posttransplants. These results demonstrated that lymphoid tissue and alloskin are both susceptible to early rejection. CONCLUSION: The experimental results revealed this model is suitable to investigate the new strategies for preclinical facial allotransplantation studies. Monitoring and modulation of early rejection in alloskin and gland lymphoid tissue is a useful strategy to evaluate composite tissue allotransplantation survival.


Asunto(s)
Modelos Animales de Enfermedad , Trasplante Facial , Rechazo de Injerto , Animales , Ciclosporina/farmacología , Ciclosporina/uso terapéutico , Cara/patología , Cara/cirugía , Rechazo de Injerto/patología , Rechazo de Injerto/prevención & control , Supervivencia de Injerto/efectos de los fármacos , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Porcinos , Porcinos Enanos , Trasplante Homólogo
19.
Oncogenesis ; 8(8): 40, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387985

RESUMEN

Target therapy aiming at critical molecules within the metastatic signal pathways is essential for prevention of hepatocellular carcinoma (HCC) progression. Hic-5 (hydrogen peroxide inducible clone-5) which belongs to the paxillin superfamily, can be stimulated by a lot of metastatic factors, such as transforming growth factor (TGF-ß), hepatocyte growth factor (HGF), and reactive oxygen species (ROS). Previous studies implicated Hic-5 cross-talks with the ROS-c-jun N-terminal kinase (JNK) signal cascade in a positive feedback manner. In this report, we addressed this issue in a comprehensive manner. By RNA interference and ectopic Hic-5 expression, we demonstrated Hic-5 was essential for activation of NADPH oxidase and ROS generation leading to activation of downstream JNK and c-jun transcription factor. This was initiated by interaction of Hic-5 with the regulator and adaptor of NADPH oxidase, Rac1 and Traf4, respectively, which may further phosphorylate the nonreceptor tyrosine kinase Pyk2 at Tyr881. On the other hand, promoter activity assay coupled with deletion mapping and site directed mutagenesis strategies demonstrated the distal c-jun and AP4 putative binding regions (943-1126 bp upstream of translational start site) were required for transcriptional activation of Hic-5. Thus Hic-5 was both downstream and upstream of NADPH oxidase-ROS-JNK-c-jun cascade. This signal circuit was essential for regulating the expression of epithelial mesenchymal transition (EMT) factors, such as Snail, Zeb1, E-cadherin, and matrix metalloproteinase 9, involved in HCC cell migration and metastasis. Due to the limited expression of Hic-5 in normal tissue, it can be a promising therapeutic target for preventing HCC metastasis.

20.
Exp Eye Res ; 87(6): 594-603, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18948097

RESUMEN

Ethambutol (EMB)-induced ocular side effects may involve the influence on functions of retinal pigment epithelium (RPE), in addition to EMB-induced optic neuropathy. To address this issue, the molecular and cellular effects of EMB on RPE including growth regulation, morphological responses, phagocytic activity, and the relevant signaling pathways were investigated. EMB (at optimal concentration 8.0mM) can trigger cell cycle arrest in both RPE50 and ARPE19 cells, accompanied by reduced DNA synthesis. EMB also induced cytoplasmic vacuole formation in both RPE cell lines. Under transmission electric microscope, the phagosomes were replaced by vacuoles and the number of microvilli was reduced in EMB-treated cells. Animal experiments also demonstrated the vacuole formation within RPE of the EMB-treated rats. On the other hand, by in vitro phagocytosis assay using rod outer segment (ROS) as the target, we found EMB suppressed phagocytosis in the cultured RPE, which is consistent with the decreased rhodopsin uptake in the RPE of the EMB-treated rats. Furthermore, inhibitor of protein kinase C but not MAPK, prevented the EMB-induced phenotypical changes. Using a non-radioactive PKC assay, we also demonstrated the PKC activity in both RPE cell lines can be induced by EMB. In conclusion, EMB may exert toxic effects in RPE including suppression of cell growth, formation of cytoplasmic vacuoles and reduction of phagocytic functions via PKC signal pathway.


Asunto(s)
Antituberculosos/farmacología , Etambutol/farmacología , Proteína Quinasa C/fisiología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , ADN/biosíntesis , Humanos , Masculino , Microscopía Electrónica , Fagocitosis/efectos de los fármacos , Ratas , Ratas Wistar , Epitelio Pigmentado de la Retina/enzimología , Epitelio Pigmentado de la Retina/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA