Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2311673120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109541

RESUMEN

The unbalanced immune state is the dominant feature of myocardial injury. However, the complicated pathology of cardiovascular diseases and the unique structure of cardiac tissue lead to challenges for effective immunoregulation therapy. Here, we exploited oral fullerene nanoscavenger (OFNS) to maintain intestinal redox homeostasis to resolve systemic inflammation for effectively preventing distal myocardial injury through bidirectional communication along the heart-gut immune axis. Observably, OFNS regulated redox microenvironment to repair cellular injury and reduce inflammation in vitro. Subsequently, OFNS prevented myocardial injury by regulating intestinal redox homeostasis and recovering epithelium barrier integrity in vivo. Based on the profiles of transcriptomics and proteomics, we demonstrated that OFNS balanced intestinal and systemic immune homeostasis for remote cardioprotection. Of note, we applied this principle to intervene myocardial infarction in mice and mini-pigs. These findings highlight that locally addressing intestinal redox to inhibit systemic inflammation could be a potent strategy for resolving remote tissue injury.


Asunto(s)
Fulerenos , Infarto del Miocardio , Porcinos , Ratones , Animales , Fulerenos/farmacología , Porcinos Enanos , Inflamación/patología , Infarto del Miocardio/prevención & control , Homeostasis , Mucosa Intestinal
2.
Ecotoxicol Environ Saf ; 220: 112385, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34082241

RESUMEN

Sulfometuron methyl (SM) is a widely used herbicide and thus leading to accumulation in the environment. The toxicity assessments of SM in model organisms are currently rare. In the present study, zebrafish were utilized for evaluating the detrimental effects of SM in aquatic vertebrates. Zebrafish embryos were exposed to 0, 10, 20, and 40 mg/L SM from 5.5 to 72 h post-fertilization (hpf), respectively. Consequently, SM exposure resulted in increasing the mortality rate and reducing hatching rate in larval zebrafish at 10, 20, and 40 mg/L SM-treated groups. The reduced numbers of immune cells (neutrophils and macrophages) were observed after SM exposure by a dose-dependent manner. The inflammatory responses (TLR4, MYD88, IL-1ß, IL-6, IL-8, IFN-γ, IL-10, and TGF-ß) were measured to estimate immune responses. Anti-inflammatory factors (IL-10 and TGF-ß) were down-regulated in all the treated groups and significantly altered at 40 mg/L exposure group. Additionally, behavioral tests suggested that SM treatment significantly increased the total distance, average speed, and maximum acceleration of larval zebrafish during light-dark transition and subsequently enzymology test displayed the same trend to locomotor behaviors. The content significantly increased in oxidative stress, as reflected in ROS level in all the treated groups. The numbers of cell apoptosis were significantly increased at 20, and 40 mg/L and the highest concentration group induced the substantial increment (P < 0.001) of apoptosis-related genes including p53, Bax/Bcl-2, caspase-9, and caspase-3. In summary, our results demonstrated that exposure to SM caused toxicity of development, immune system, locomotor behavior, oxidative stress, and cell apoptosis at the early developmental stages of zebrafish.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Herbicidas/toxicidad , Compuestos de Sulfonilurea/toxicidad , Pez Cebra/crecimiento & desarrollo , Animales , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
3.
ACS Nano ; 18(3): 2131-2148, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198697

RESUMEN

Endotoxemia is a life-threatening multiple organ failure disease caused by bacterial endotoxin infection. Unfortunately, current single-target therapy strategies have failed to prevent the progression of endotoxemia. Here, we reported that alanine fullerene redox modulator (AFRM) remodeled the intestinal microenvironment for multiple targets endotoxemia mitigation by suppressing inflammatory macrophages, inhibiting macrophage pyroptosis, and repairing epithelial cell barrier integrity. Specifically, AFRM exhibited broad-spectrum and self-cascade redox regulation properties with superoxide dismutase (SOD)-like enzyme, peroxidase (POD)-like enzyme activity, and hydroxyl radical (•OH) scavenging ability. Guided by proteomics, we demonstrated that AFRM regulated macrophage redox homeostasis and down-regulated LPS/TLR4/NF-κB and MAPK/ERK signaling pathways to suppress inflammatory hyperactivation. Of note, AFRM could attenuate inflammation-induced macrophage pyroptosis via inhibiting the activation of gasdermin D (GSDMD). In addition, our results revealed that AFRM could restore extracellular matrix and cell-tight junction proteins and protect the epithelial cell barrier integrity by regulating extracellular redox homeostasis. Consequently, AFRM inhibited systemic inflammation and potentiated intestinal epithelial barrier damage repair during endotoxemia in mice. Together, our work suggested that fullerene based self-cascade redox modulator has the potential in the management of endotoxemia through synergistically remodeling the inflammation and epithelial barriers in the intestinal microenvironment.


Asunto(s)
Endotoxemia , Fulerenos , Ratones , Animales , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Intestinos , FN-kappa B/metabolismo , Inflamación , Oxidación-Reducción , Lipopolisacáridos/farmacología
4.
Adv Healthc Mater ; 12(11): e2202161, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36623263

RESUMEN

Atherosclerosis accounts for major mortality of cardiac-cerebral vascular diseases worldwide. Pathologically, persistent inflammation dominates the progression of atherosclerosis, which can be accelerated by a high-fat diet (HFD), possibly through triggering local intestinal oxidative stress and ensuing gut barrier dysfunction. Current pharmacotherapy has been disappointing, ascribed to limited therapeutic efficacy and undesirable side effects. Hence it is compelling to explore novel efficient anti-atherosclerotic drugs with minimal toxicity. Herein, two fullerene-based therapies with exceptional antioxidant capacity, in the form of water-soluble injectable fullerene nanoparticles (IFNPs) and oral fullerene tablets (OFTs), are demonstrated to retard HFD-fueled atherosclerosis in ApoE-/- mice with favorable biosafety. Especially, OFTs afford robust anti-atherosclerotic therapeutic even against advanced plaques, besides stabilizing plaques with less lipid deposition and improved collagen expression. Specifically, it is identified that OFTs can ameliorate HFD-induced dysregulated intestinal redox homeostasis and restore gut barrier integrity, thereby restraining the translocation of luminal lipopolysaccharide (LPS) into the bloodstream. Furthermore, significantly reduced circulating LPS after OFTs treatment contributes to down-regulated LPS/TLR4/NF-κB signaling in aortic focal, which further mitigates local inflammation and disease development. Overall, this study confirms the universal anti-atherosclerotic effect of fullerenes and provides a novel therapeutic mechanism via modulating intestinal barrier to attenuate atherosclerosis.


Asunto(s)
Aterosclerosis , Fulerenos , Animales , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Dieta Alta en Grasa/efectos adversos , Fulerenos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/patología , Lipopolisacáridos/sangre , Ratones Endogámicos C57BL , Resultado del Tratamiento , Ratones Noqueados para ApoE , Masculino
5.
Adv Mater ; : e2303321, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540501

RESUMEN

Double-stranded RNA (dsRNA) is a major impurity that can induce innate immune responses and cause adverse drug reactions. Removing dsRNA is an essential and non-trivial process in manufacturing mRNA. Current methods for dsRNA elimination use either high-performance liquid chromatography or microcrystalline cellulose, rendering the process complex, expensive, toxic, and/or time-consuming. This study introduces a highly efficient and ultrafast method for dsRNA elimination using natural wood-derived macroporous cellulose (WMC). With a naturally formed large total pore area and low tortuosity, WMC removes up to 98% dsRNA within 5 min. This significantly shortens the time for mRNA purification and improves purification efficiency. WMC can also be filled into chromatographic columns of different sizes and integrates with fast-protein liquid chromatography for large-scale mRNA purification to meet the requirements of mRNA manufacture. This study further shows that WMC purification improves the enhanced green fluorescent protein mRNA expression efficiency by over 28% and significantly reduces cytokine secretion and innate immune responses in the cells. Successfully applying WMC provides an ultrafast and efficient platform for mRNA purification, enabling large-scale production with significant cost reduction.

6.
Mol Ther Nucleic Acids ; 32: 445-453, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37181450

RESUMEN

High purity is essential in mRNA-based therapeutic applications. A major contaminant of in vitro-transcribed (IVT) mRNA manufacturing is double-stranded RNA (dsRNA), which can induce severe anti-viral immune responses. Detection methods, such as agarose gel electrophoresis, ELISA, and dot-blot assay, are used to detect the existence of dsRNA in IVT mRNA products. However, these methods are either not sensitive enough or time-consuming. To overcome these challenges, we develop a rapid, sensitive, and easy-to-implement colloidal gold nanoparticle-based lateral flow strip assay (LFSA) with sandwich format for the detection of dsRNA from IVT process. dsRNA contaminant can be determined visually on the test strip or quantitatively with a portable optical detector. This method allows for a 15 min detection of N1-methyl-pseudouridine (m1Ψ)-containing dsRNA with a detection limit of 69.32 ng/mL. Furthermore, we establish the correlation between the LFSA test results and the immune response caused by dsRNA in mice. The LFSA platform allows the rapid, sensitive, and quantitative monitoring of purity in massive IVT mRNA products and aids for the prevention of immunogenicity by dsRNA impurities.

7.
Natl Sci Rev ; 10(12): nwad309, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204453

RESUMEN

Sleep deprivation (SD) is a severe public health threat that can cause systemic inflammation and nerve damage. Few effective and side-effect-free drugs are available to address SD. However, the bidirectional communications between the brain and gut provide new strategies for anti-SD therapeutics. Here we explored oral delivery of fullerene nano-antioxidants (FNAO) in the SD model to improve sleep by regulating abnormal intestinal barrier and systemic inflammation via the brain-gut axis. SD caused excessive reactive oxygen species (ROS) production and hyperactive inflammatory responses in the intestines of zebrafish and mouse models, leading to disturbed sleep patterns and reduced brain nerve activity. Of note, based on the property of the conjugated π bond of the C60 structure to absorb unpaired electrons, oral FNAO efficiently reduced the excessive ROS in the intestines, maintained redox homeostasis and intestinal barrier integrity, and ameliorated intestinal and systemic inflammation, resulting in superior sleep improvement. Our findings suggest that maintaining intestinal homeostasis may be a promising avenue for SD-related nerve injury therapy.

8.
Toxics ; 10(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35736907

RESUMEN

Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.

9.
J Mater Chem B ; 10(45): 9457-9465, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36346268

RESUMEN

The development and progression of colorectal cancer (CRC) are highly dependent on the long-term inflammatory microenvironment with immune dysregulation in the colorectum. However, effective therapeutics are limited to targeting CRC. Here, we developed oral fullerene tablets (OFTs) that can act directly on the colorectal site by oral administration and reduce the inflammatory state at the tumor site for effective CRC therapy. In detail, OFTs scavenged reactive oxygen species (ROS), restrained the mutation of the wild-type P53, inhibited the activation of the inflammatory pathway nuclear factor-κB (NF-κB) and the signal transducer and activator of transcription 3 (STAT3) in the colorectum of CRC mice. Subsequently, OFTs could greatly reduce the infiltration of pro-inflammatory M1 macrophages and neutrophils at the tumor site, restoring the inflammatory microenvironment and immune homeostasis in the colorectal region, and ultimately achieving the inhibition of CRC. In addition, there were no significant toxic side effects of the long-term administration of OFTs. Our work provides an effective oral therapeutic strategy for CRC therapy by modulating the colorectal tumor inflammatory microenvironment and sheds light on the route for oral nano-materials in the clinical treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Fulerenos , Ratones , Animales , Fulerenos/farmacología , Fulerenos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Transducción de Señal , FN-kappa B/metabolismo , Comprimidos , Microambiente Tumoral
10.
Gene Expr Patterns ; 18(1-2): 1-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25917378

RESUMEN

DNA methylation reprogramming, regulated by DNA methylation and demethylation related genes, is essential for early embryo development; however, it is incomplete in cloned embryos, leading to poor cloning efficiency. Previous studies have shown that DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), could enhance the development of cloned embryos, thus, the genes regulating DNA methylation reprogramming should appropriately express in these embryos. To examine whether there is a correlation between embryo development and the expression patterns of DNA methylation reprogramming related genes, we investigated the developmental progress and transcription levels of candidate genes containing DNA methyltransferases (Dnmt1 and Dnmt3a), ten eleven translocation (Tet) dioxygenases (Tet1, Tet2 and Tet3) and base excision repair related genes including activation induced deamination (Aid), thymine DNA glycosylase (Tdg) and AP endonuclease 1 (Apex1) in porcine early embryos. In this study, our results demonstrated that compared with in vitro fertilized embryos, delayed and reduced development and downregulated transcripts of DNA methylation reprogramming related genes after the 4-cell stage were observed in cloned embryos, showing the significantly (P < 0.05) lower proportions of embryos at the 8-cell, morula and blastocyst stages (19.69% vs 32.64% at 72 h, 16.67% vs 25.49% at 120 h and 19.82% vs 26.29% at 156 h, respectively) and transcription levels of Dnmt3a, Tet1, Tet2, Tet3, Aid, Tdg and Apex1. When cloned embryos were treated with 5-aza-dC, the developmental progress and transcription levels of DNA methylation reprogramming related genes were improved, more similar to those detected in fertilized counterparts. Furthermore, we found that the transcripts of zygotic genome activation and blastocyst quality related genes were also effectively promoted in porcine cloned embryos after 5-aza-dC treatment. In conclusion, our results demonstrated that the disturbed transcripts of DNA methylation reprogramming related genes were observed in porcine cloned embryos, while the enhanced development of porcine cloned embryos induced by 5-aza-dC was accompanied with the improved expression of DNA methylation reprogramming related genes after the 4-cell stage, providing a positive correlation between the expression patterns of DNA methylation reprogramming related genes and the developmental competence of porcine cloned embryos after zygotic genome activation.


Asunto(s)
Reprogramación Celular , Metilación de ADN , Desarrollo Embrionario , Porcinos/embriología , Porcinos/genética , Animales , Blastocisto/metabolismo , Clonación de Organismos , Fibroblastos/metabolismo , Genoma , Oocitos/metabolismo , Transcriptoma , Cigoto/metabolismo
11.
Cell Reprogram ; 17(3): 191-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26053519

RESUMEN

Incomplete reprogramming of pluripotent genes in cloned embryos is associated with low cloning efficiency. Epigenetic modification agents have been shown to enhance the developmental competence of cloned embryos; however, the effect of the epigenetic modification agents on pluripotent gene reprogramming remains unclear. Here, we investigated Nanog reprogramming and the expression patterns of pluripotent transcription factors during early embryo development in pigs. We found that compared with fertilized embryos, cloned embryos displayed higher methylation in the promoter and 5'-untranslated region and lower methylation in the first exon of Nanog. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of porcine cloned embryos, Nanog methylation reprogramming was also improved, similar to that detected in fertilized counterparts. Furthermore, our results showed that the epigenetic modification agents improved the expression levels of Oct4 and Sox2 and effectively promoted Nanog transcription in cloned embryos. In conclusion, our results demonstrated that the epigenetic modification agent 5-aza-dC or TSA improved Nanog methylation reprogramming and the expression patterns of pluripotent transcription factors, thereby resulting in the enhanced expression of Nanog and high development of porcine cloned embryos. This work has important implications in the improvement of cloning efficiency.


Asunto(s)
Reprogramación Celular , Clonación de Organismos/métodos , Desarrollo Embrionario/genética , Epigénesis Genética , Proteínas de Homeodominio/metabolismo , Sus scrofa/genética , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Metilación de ADN , Decitabina , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/efectos de los fármacos , Proteínas de Homeodominio/genética , Ácidos Hidroxámicos/farmacología , Sus scrofa/metabolismo , Sus scrofa/fisiología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética
12.
PLoS One ; 10(6): e0129803, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26068219

RESUMEN

Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Epigenetic modification agents can improve genomic methylation reprogramming and the development of cloned embryos, however, the effect of epigenetic modification agents on gene-specific methylation reprogramming remains poorly studied. Here, we investigated DNA methylation reprogramming of pluripotency (Oct4) and tissue specific (Thy1) genes during early embryo development in pigs. In this study, we found that compared with in vitro fertilized counterparts, cloned embryos displayed the disrupted patterns of Oct4 demethylation and Thy1 remethylation. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of cloned embryos, the transcripts of DNA methyltransferases (Dnmt1 and Dnmt3a), histone acetyltransferase 1 (Hat1) and histone deacetylase 1 (Hdac1) and the methylation and expression patterns of Oct4 and Thy1 became similar to those detected in in vitro fertilized counterparts. Further studies showed that Dnmt1 knockdown in cloned embryos enhanced the methylation reprogramming of Oct4 and Thy1 and promoted the activation of Oct4 and the silence of Thy1. In conclusion, our results demonstrated that cloned embryos displayed incomplete gene-specific methylation reprogramming and disrupted expression patterns of pluripotency and tissue specific genes, and epigenetic modification agents improved gene-specific methylation reprogramming and expression pattern by regulating epigenetic modification related genes. This work would have important implications in improving cloning efficiency.


Asunto(s)
Azacitidina/análogos & derivados , Reprogramación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Porcinos/embriología , Porcinos/genética , Animales , Azacitidina/farmacología , Células Cultivadas , Decitabina , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Técnicas de Transferencia Nuclear , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA