Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209153

RESUMEN

The dissipative particle dynamics simulation method is adopted to investigate the microemulsion systems prepared with surfactant (H1T1), oil (O) and water (W), which are expressed by coarse-grained models. Two topologies of O/W and W/O microemulsions are simulated with various oil and water ratios. Inverse W/O microemulsion transform to O/W microemulsion by decreasing the ratio of oil-water from 3:1 to 1:3. The stability of O/W and W/O microemulsion is controlled by shear rate, inorganic salt and the temperature, and the corresponding results are analyzed by the translucent three-dimensional structure, the mean interfacial tension and end-to-end distance of H1T1. The results show that W/O microemulsion is more stable than O/W microemulsion to resist higher inorganic salt concentration, shear rate and temperature. This investigation provides a powerful tool to predict the structure and the stability of various microemulsion systems, which is of great importance to developing new multifunctional microemulsions for multiple applications.

2.
Materials (Basel) ; 15(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35454593

RESUMEN

This study aimed to study the effects of different catalyst introduction methods on the distribution of SiC nanowires (SiCNWs) and the mechanical properties of SiCf/SiC composites. Two different catalyst-introduction methods (electroplating (EP) vs. atomic deposition (AD)) have been used to catalyze the growth of SiC nanowires in SiCf preforms. The morphology, structure and phase composition were systematically investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SiCNWs-reinforced SiCf/SiC composited was densified by CVI. The compressive strength of the SiCNWs-reinforced SiCf/SiC composites was evaluated by radial crushing test. Compared with EP, atomic Ni catalysts fabricated by AD have higher diffusivity for better diffusion into the SiCf preform. The yield of SiCNWs is effectively increased in the internal pores of the SiCf preform, and a denser network forms. Therefore, the mechanical properties of SiCNW-containing SiCf/SiC composites are significantly improved. Compared with the EP-composites and SiCf/SiC composites, the compressive strength of AD-composites is increased by 51.1% and 56.0%, respectively. The results demonstrate that the use of AD method to grow SiCNWs is promising for enhancing the mechanical properties of SiCf/SiC composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA