Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2317703121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687792

RESUMEN

Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.


Asunto(s)
Aldehídos , Colorantes Fluorescentes , Microscopía Fluorescente , Mitocondrias , Mitocondrias/metabolismo , Humanos , Colorantes Fluorescentes/química , Aldehídos/metabolismo , Aldehídos/química , Microscopía Fluorescente/métodos , Células HeLa , Reactivos de Enlaces Cruzados/química , Animales , Membranas Mitocondriales/metabolismo
2.
Hum Mol Genet ; 24(8): 2247-66, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25552653

RESUMEN

Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy.


Asunto(s)
Proteínas Portadoras/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Dieta Cetogénica , Fibroblastos/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales , Datos de Secuencia Molecular , Especificidad de Órganos , ARN de Transferencia/genética , Proteínas de Unión al ARN , Alineación de Secuencia
3.
RSC Adv ; 8(44): 24883-24892, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35542120

RESUMEN

Hollow mesoporous silica capsules (HMSC) are potential drug transport vehicles due to their biocompatibility, high loading capacity and sufficient stability in biological milieu. Herein, we report the synthesis of ellipsoid-shaped HMSC (aspect ratio ∼2) performed using hematite particles as solid templates that were coated with a conformal silica shell through cross-condensation reactions. For obtaining hollow silica capsules, the iron oxide core was removed by acidic leaching. Gas sorption studies on HMSC revealed mesoscopic pores (main pore width ∼38 Å) and a high surface area of 308.8 m2 g-1. Cell uptake of dye-labeled HMSC was confirmed by incubating them with human cervical cancer (HeLa) cells and analyzing the internalization through confocal microscopy. The amphiphilic nature of HMSC for drug delivery applications was tested by loading antibiotic (ciprofloxacin) and anticancer (curcumin) compounds as model drugs for hydrophilic and hydrophobic therapeutics, respectively. The versatility of HMSC in transporting hydrophilic as well as hydrophobic drugs and a pH dependent drug release over several days under physiological conditions was demonstrated in both cases by UV-vis spectroscopy. Ciprofloxacin-loaded HMSC were additionally evaluated towards Gram negative (E. coli) bacteria and demonstrated their efficacy even at low concentrations (10 µg ml-1) in inhibiting complete bacterial growth over 18 hours.

4.
Nat Commun ; 5: 4924, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25233189

RESUMEN

DNA damage and telomere dysfunction shorten organismal lifespan. Here we show that oral glucose administration at advanced age increases health and lifespan of telomere dysfunctional mice. The study reveals that energy consumption increases in telomere dysfunctional cells resulting in enhanced glucose metabolism both in glycolysis and in the tricarboxylic acid cycle at organismal level. In ageing telomere dysfunctional mice, normal diet provides insufficient amounts of glucose thus leading to impaired energy homeostasis, catabolism, suppression of IGF-1/mTOR signalling, suppression of mitochondrial biogenesis and tissue atrophy. A glucose-enriched diet reverts these defects by activating glycolysis, mitochondrial biogenesis and oxidative glucose metabolism. The beneficial effects of glucose substitution on mitochondrial function and glucose metabolism are blocked by mTOR inhibition but mimicked by IGF-1 application. Together, these results provide the first experimental evidence that telomere dysfunction enhances the requirement of glucose substitution for the maintenance of energy homeostasis and IGF-1/mTOR-dependent mitochondrial biogenesis in ageing tissues.


Asunto(s)
Glucosa/química , Telómero/ultraestructura , Envejecimiento , Animales , Glucemia/metabolismo , Calorimetría , Cruzamientos Genéticos , Daño del ADN , Dieta , Metabolismo Energético , Fibroblastos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glucólisis , Heterocigoto , Homeostasis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno/química , Sirolimus/química , Serina-Treonina Quinasas TOR/metabolismo , Timo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA