Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 116: 213-226, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28887149

RESUMEN

The wasp family Vespidae comprises more than 5000 described species which represent life history strategies ranging from solitary and presocial to eusocial and socially parasitic. The phylogenetic relationships of the major vespid wasp lineages (i.e., subfamilies and tribes) have been investigated repeatedly by analyzing behavioral and morphological traits as well as nucleotide sequences of few selected genes with largely incongruent results. Here we reconstruct their phylogenetic relationships using a phylogenomic approach. We sequenced the transcriptomes of 24 vespid wasp and eight outgroup species and exploited the transcript sequences for design of probes for enriching 913 single-copy protein-coding genes to complement the transcriptome data with nucleotide sequence data from additional 25 ethanol-preserved vespid species. Results from phylogenetic analyses of the combined sequence data revealed the eusocial subfamily Stenogastrinae to be the sister group of all remaining Vespidae, while the subfamily Eumeninae turned out to be paraphyletic. Of the three currently recognized eumenine tribes, Odynerini is paraphyletic with respect to Eumenini, and Zethini is paraphyletic with respect to Polistinae and Vespinae. Our results are in conflict with the current tribal subdivision of Eumeninae and thus, we suggest granting subfamily rank to the two major clades of "Zethini": Raphiglossinae and Zethinae. Overall, our findings corroborate the hypothesis of two independent origins of eusociality in vespid wasps and suggest a single origin of using masticated and salivated plant material for building nests by Raphiglossinae, Zethinae, Polistinae, and Vespinae. The inferred phylogenetic relationships and the open access vespid wasp target DNA enrichment probes will provide a valuable tool for future comparative studies on species of the family Vespidae, including their genomes, life styles, evolution of sociality, and co-evolution with other organisms.


Asunto(s)
ADN/genética , Filogenia , Transcriptoma/genética , Avispas/clasificación , Avispas/genética , Animales , Secuencia de Bases , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
2.
Proc Biol Sci ; 282(1821): 20151777, 2015 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-26674944

RESUMEN

Cleptoparasitic wasps and bees smuggle their eggs into the nest of a host organism. Here the larvae of the cleptoparasite feed upon the food provision intended for the offspring of the host. As cleptoparasitism incurs a loss of fitness for the host organism (offspring of the host fail to develop), hosts of cleptoparasites are expected to exploit cues that alert them to potential cleptoparasite infestation. Cuticular hydrocarbons (CHCs) could serve as such cues, as insects inevitably leave traces of them behind when entering a nest. By mimicking the host's CHC profile, cleptoparasites can conceal their presence and evade detection by their host. Previous studies have provided evidence of cleptoparasites mimicking their host's CHC profile. However, the impact of this strategy on the evolution of the host's CHC profile has remained unexplored. Here, we present results from our investigation of a host-cleptoparasite system consisting of a single mason wasp species that serves syntopically as the host to three cuckoo wasp species. We found that the spiny mason wasp (Odynerus spinipes) is able to express two substantially different CHC profiles, each of which is seemingly mimicked by a cleptoparasitic cuckoo wasp (i.e. Chrysis mediata and Pseudospinolia neglecta). The CHC profile of the third cuckoo wasp (Chrysis viridula), a species not expected to benefit from mimicking its host's CHC profile because of its particular oviposition strategy, differs from the two CHC profiles of its host. Our results corroborate the idea that the similarity of the CHC profiles between cleptoparasitic cuckoo wasps and their hosts are the result of chemical mimicry. They further suggest that cleptoparasites may represent a hitherto unappreciated force that drives the evolution of their hosts' CHCs.


Asunto(s)
Hidrocarburos/química , Avispas/química , Avispas/parasitología , Comunicación Animal , Animales , Evolución Biológica , Señales (Psicología) , Interacciones Huésped-Parásitos , Odorantes , Análisis de Secuencia de ADN , Especificidad de la Especie , Avispas/fisiología
3.
BMC Ecol Evol ; 22(1): 138, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443667

RESUMEN

BACKGROUND: Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites' mimicry by changing these cues. We addressed this question by analyzing cuticular hydrocarbon (CHC) profiles of Cerceris and Philanthus wasps and their brood parasites, cuckoo wasps mimicking the CHC profiles of their hosts. Some of these hosts use hydrocarbons to preserve their prey against fungal infestation and thus, they cannot significantly change their CHC composition in response to chemical mimicry by Hedychrum brood parasites. RESULTS: We found that the CHC overlap between brood parasites and their hosts was lower in case of host wasps not preserving their prey than in case of prey-preserving host wasps, whose CHC evolution is constrained. Furthermore, the CHC profiles in non-preserving host wasps is more strongly diversified in females than in males, thus in the sex that is chemically mimicked by brood parasites. CONCLUSION: Our results provide evidence for a chemical arms race between those hosts that are liberated from stabilizing selection on their chemical template and their parasites.


Asunto(s)
Rabdomiosarcoma Alveolar , Avispas , Femenino , Masculino , Animales , Abejas , Aves , Restricción Física , Investigación , Señales (Psicología)
4.
Insects ; 11(2)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093328

RESUMEN

Insect brood parasites have evolved a variety of strategies to avoid being detected by their hosts. Few previous studies on cuckoo wasps (Hymenoptera: Chrysididae), which are natural enemies of solitary wasps and bees, have shown that chemical mimicry, i.e., the biosynthesis of cuticular hydrocarbons (CHC) that match the host profile, evolved in several species. However, mimicry was not detected in all investigated host-parasite pairs. The effect of host range as a second factor that may play a role in evolution of mimicry has been neglected, since all previous studies were carried out on host specialists and at nesting sites where only one host species occurred. Here we studied the cuckoo wasp Parnopes grandior, which attacks many digger wasp species of the genus Bembix (Hymenoptera: Crabronidae). Given its weak host specialization, P. grandior may either locally adapt by increasing mimicry precision to only one of the sympatric hosts or it may evolve chemical insignificance by reducing the CHC profile complexity and/or CHCs amounts. At a study site harbouring three host species, we found evidence for a weak but appreciable chemical deception strategy in P. grandior. Indeed, the CHC profile of P. grandior was more similar to all sympatric Bembix species than to a non-host wasp species belonging to the same tribe as Bembix. Furthermore, P. grandior CHC profile was equally distant to all the hosts' CHC profiles, thus not pointing towards local adaptation of the CHC profile to one of the hosts' profile. We conducted behavioural assays suggesting that such weak mimicry is sufficient to reduce host aggression, even in absence of an insignificance strategy, which was not detected. Hence, we finally concluded that host range may indeed play a role in shaping the level of chemical mimicry in cuckoo wasps.

5.
Evolution ; 73(6): 1182-1199, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30957216

RESUMEN

The impact of different reproductive barriers on species or population isolation may vary in different stages of speciation depending on evolutionary forces acting within species and through species' interactions. Genetic incompatibilities between interacting species are expected to reinforce prezygotic barriers in sympatric populations and lead to cascade reinforcement between conspecific populations living within and outside the areas of sympatry. We tested these predictions and studied whether and how the strength and target of reinforcement between Drosophila montana and Drosophila flavomontana vary between sympatric populations with different histories and species abundances. All barriers between D. montana females and D. flavomontana males were nearly complete, while in the reciprocal cross strong postzygotic isolation was accompanied by prezygotic barriers whose strength varied according to population composition. Sexual isolation between D. flavomontana females and D. montana males was increased in long-established sympatric populations, where D. flavomontana is abundant, while postmating prezygotic (PMPZ) barriers were stronger in populations where this species is a new invader and still rare and where female discrimination against heterospecific males was lower. Strengthening of sexual and PMPZ barriers in this cross also induced cascade reinforcement of respective barriers between D. flavomontana populations, which is a classic signature of reinforcement process.


Asunto(s)
Evolución Biológica , Drosophila/fisiología , Aislamiento Reproductivo , Conducta Sexual Animal , Animales , Densidad de Población , Simpatría
6.
Evolution ; 71(11): 2562-2571, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28791674

RESUMEN

The cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles. Here, we show that in Philanthinae digger wasps (Crabronidae) the CHC profile coevolved with a peculiar brood-care strategy. In particular, we found that the behavior to embalm prey stored in the nest with hydrocarbons is adaptive to protect larval food from fungi in those species hunting for Hymenoptera. The prey embalming secretion is identical in composition to the alkene-dominated CHC profile in these species, suggesting that their profile is adaptively conserved for this purpose. In contrast, prey embalming is not required in those species that switched to Coleoptera as prey. Released from this chemical brood-care strategy, Coleoptera-hunting species considerably diversified their CHC profiles. Differential needs to successfully protect prey types used as larval food have thus driven the diversification of CHCs profiles of female Philanthinae wasps. To the best of our knowledge, this is the first evidence of a direct link between selection pressure for food preservation and CHC diversity.


Asunto(s)
Exoesqueleto/metabolismo , Evolución Molecular , Hidrocarburos/metabolismo , Conducta Predatoria , Avispas/genética , Exoesqueleto/química , Animales , Femenino , Hidrocarburos/análisis , Avispas/fisiología
7.
J Insect Physiol ; 100: 119-127, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28477982

RESUMEN

Females of most aculeate Hymenoptera mate only once and males are therefore under a strong competitive pressure which is expected to favour the evolution of rapid detection of virgin females. In several bee species, the cuticular hydrocarbon (CHC) profile exhibited by virgin females elicits male copulation attempts. However, it is still unknown how widespread this type of sexual communication is within Aculeata. Here, we investigated the use of CHCs as mating cues in the digger wasp Stizus continuus, which belongs to the family (Crabronidae) from within bees arose. In field experiments, unmanipulated, recently emerged virgin female dummies promptly elicit male copulation attempts, whereas 1-4days old mated females dummies were still attractive but to a much lesser extent. In contrast, old (10-15days) mated female dummies did not attract males at all. After hexane-washing, attractiveness almost disappeared but could be achieved by adding CHC extracts from virgin females even on hexane-washed old mated females. Thus, the chemical base of recognition of females as appropriate mating partner by males is coded in their CHC profile. Accordingly, differences in CHC profiles can be detected between sexes, with males having larger amounts of alkenes and exclusive long-chain alkanes, and within females specially according to their mating status. Shortly after mating, almost all of the major hydrocarbons found on the cuticle of females undergo significant changes in their abundance, with a clear shift from short-chain to long-chain linear and methyl-branched alkanes. The timely detection of virgin females by males in S. continuus could be advantageous within the narrow period of female emergence, when male-male competition is strongest.


Asunto(s)
Hidrocarburos/metabolismo , Preferencia en el Apareamiento Animal , Atractivos Sexuales/metabolismo , Avispas/fisiología , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA