Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JCI Insight ; 6(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33630765

RESUMEN

Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.


Asunto(s)
Criopreservación , Epigénesis Genética , Pulmón/metabolismo , Transcripción Genética , Metilación de ADN , Expresión Génica , Humanos , Pulmón/citología , Análisis de Secuencia de ARN/métodos , Flujo de Trabajo
2.
FEBS J ; 274(14): 3685-3694, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17608726

RESUMEN

Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Empalme Alternativo/genética , Secuencia de Aminoácidos , Antígenos de Protozoos , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Protozoarias , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sensibilidad y Especificidad , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Acta Trop ; 97(2): 212-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16329985

RESUMEN

The rodent malaria parasite Plasmodium chabaudi encodes one food vacuole plasmepsin-the aspartic proteinases important in haemoglobin degradation. A recombinant form of this enzyme was found to cleave a variety of peptide substrates and was susceptible to a selection of naturally occurring and synthetic inhibitors, displaying an inhibition profile distinct from that of aspartic proteinases from other malaria parasites. In addition, inhibitors of HIV proteinase that kill P. chabaudi in vivo were also inhibitors of this new plasmepsin. P. chabaudi is a widely used model for human malaria species and, therefore, the characterisation of this plasmepsin is an important contribution towards understanding its biology.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Malaria/parasitología , Plasmodium chabaudi/enzimología , Secuencia de Aminoácidos , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/genética , Compuestos Cromogénicos/metabolismo , ADN Protozoario/química , ADN Protozoario/genética , Modelos Animales de Enfermedad , Inhibidores de la Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Cinética , Ratones , Datos de Secuencia Molecular , Plasmodium chabaudi/genética , Plasmodium chabaudi/metabolismo , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de Proteína , Vacuolas/enzimología
4.
FEBS Lett ; 513(2-3): 159-62, 2002 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-11904142

RESUMEN

A new aspartic proteinase from the human malaria parasite Plasmodium falciparum is able to hydrolyse human haemoglobin at a site known to be the essential primary cleavage site in the haemoglobin degradation pathway. Thus, plasmepsin IV may play a crucial role in this critical process which yields nutrients for parasite growth. Furthermore, synthetic inhibitors known to inhibit parasite growth in red cells in culture are able to inhibit the activity of this enzyme in vitro. As a result, plasmepsin IV appears to be a potential target for the development of new antiparasitic drugs.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Datos de Secuencia Molecular , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 282(9): 6508-16, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17145748

RESUMEN

The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/fisiología , Especificidad por Sustrato
6.
Biol Chem ; 387(8): 1139-42, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16895485

RESUMEN

In addition to self-inhibition of aspartic proteinase zymogens by their intrinsic proparts, the activity of certain members of this enzyme family can be modulated through active-site occupation by extrinsic polypeptides such as the small IA3 protein from Saccharomyces cerevisiae. The unprecedented mechanism by which IA3 helicates to inhibit its sole target aspartic proteinase locates an i, i+4 pair of charged residues (Lys18+Asp22) on an otherwise-hydrophobic face of the amphipathic helix. The nature of these residues is not crucial for effective inhibition, but re-location of the lysine residue by one turn (+4 residues) in the helical IA3 positions its side chain in the mutant IA3-proteinase complex in an orientation essentially identical to that of the key lysine residue in zymogen proparts. The binding of the extrinsic mutant IA3 shows pH dependence reminiscent of that required for the release of intrinsic zymogen proparts so that activation can occur.


Asunto(s)
Adaptación Fisiológica/fisiología , Ácido Aspártico Endopeptidasas/química , Lisina/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Ácido Aspártico/química , Ácido Aspártico/efectos de los fármacos , Ácido Aspártico/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Lisina/efectos de los fármacos , Lisina/metabolismo , Modelos Moleculares , Inhibidores de Proteasas/farmacología , Conformación Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad
7.
Antimicrob Agents Chemother ; 50(2): 639-48, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16436721

RESUMEN

Parasite resistance to antimalarial drugs is a serious threat to human health, and novel agents that act on enzymes essential for parasite metabolism, such as proteases, are attractive targets for drug development. Recent studies have shown that clinically utilized human immunodeficiency virus (HIV) protease inhibitors can inhibit the in vitro growth of Plasmodium falciparum at or below concentrations found in human plasma after oral drug administration. The most potent in vitro antimalarial effects have been obtained for parasites treated with saquinavir, ritonavir, or lopinavir, findings confirmed in this study for a genetically distinct P. falciparum line (3D7). To investigate the potential in vivo activity of antiretroviral protease inhibitors (ARPIs) against malaria, we examined the effect of ARPI combinations in a murine model of malaria. In mice infected with Plasmodium chabaudi AS and treated orally with ritonavir-saquinavir or ritonavir-lopinavir, a delay in patency and a significant attenuation of parasitemia were observed. Using modeling and ligand docking studies we examined putative ligand binding sites of ARPIs in aspartyl proteases of P. falciparum (plasmepsins II and IV) and P. chabaudi (plasmepsin) and found that these in silico analyses support the antimalarial activity hypothesized to be mediated through inhibition of these enzymes. In addition, in vitro enzyme assays demonstrated that P. falciparum plasmepsins II and IV are both inhibited by the ARPIs saquinavir, ritonavir, and lopinavir. The combined results suggest that ARPIs have useful antimalarial activity that may be especially relevant in geographical regions where HIV and P. falciparum infections are both endemic.


Asunto(s)
Inhibidores de la Proteasa del VIH/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Ácido Aspártico Endopeptidasas/química , Sitios de Unión , Cristalización , Femenino , Inhibidores de la Proteasa del VIH/sangre , Inhibidores de la Proteasa del VIH/uso terapéutico , Hemoglobinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Conformación Proteica , Proteínas Protozoarias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA