Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(7): e103304, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32104923

RESUMEN

Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite-mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α-ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2-oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss-of-function and gain-of-function mouse models, we showed that OXGR1 is essential for AKG-mediated exercise-induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.


Asunto(s)
Ácidos Cetoglutáricos/sangre , Atrofia Muscular/genética , Receptores Purinérgicos P2/genética , Entrenamiento de Fuerza/métodos , Adulto , Anciano , Animales , Línea Celular , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Atrofia Muscular/metabolismo , Receptores Purinérgicos P2/metabolismo
2.
BMC Vet Res ; 20(1): 13, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184589

RESUMEN

Microbial fermented feed (MF) is considered a valuable strategy to bring advantages to livestock and is widely practiced. Oral supplementation of Ginseng polysaccharide (Gps) eliminated weight loss in chickens following vaccination. This study investigated the effects of the combined use of Gps and MF on growth performance and immune indices in Xuefeng black-bone chickens. A total of 400 Xuefeng black-bone chickens at the age of 1 day were randomly assigned to four groups. Normal feed group (Control group), ginseng polysaccharide (200 mg/kg) group (Gps group), microbially fermented feed (completely replace the normal feed) group (MF group), and microbially fermented feed and add ginseng polysaccharide just before use (MF + Gps group). Each group contained 5 pens per treatment and 20 birds per pen. The body weight and average daily gain in the Gps, MF, and MF + Gps groups increased significantly (P < 0.01), while the feed conversion ratio decreased significantly (P < 0.01). The combined use of MF and Gps showed a synergistic effect. There was no significant difference in villus height (cecal) between the experimental group and the Con group. The crypt depth of the three experimental groups exhibited a significantly lower value compared to the Control group (P < 0.05). The V/C ratio of the Gps group and MF + Gps was significantly increased (P < 0.05), but there was no significant difference in the MF group. Moreover, the diarrhea rate of the Gps and the MF + Gps groups was lower than that of the Con group, while that of the MF + Gps group decreased the mortality rate (P < 0.05). The serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels in the MF, Gps, and MF + Gps groups decreased significantly (P < 0.01), the serum immunoglobulin G (IgG) levels increased significantly (P < 0.01), while the combination of MF and Gps had a synergistic effect. The combined use of Gps and MF not only further improved growth performance and immune parameters, but also reduced the diarrhea rate and mortality.


Asunto(s)
Panax , Animales , Pollos , Peso Corporal , Ciego , Diarrea/veterinaria
3.
BMC Vet Res ; 20(1): 246, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849831

RESUMEN

BACKGROUND: Reducing production costs while producing high-quality livestock and poultry products is an ongoing concern in the livestock industry. The addition of oil to livestock and poultry diets can enhance feed palatability and improve growth performance. Emulsifiers can be used as potential feed supplements to improve dietary energy utilization and maintain the efficient productivity of broilers. Therefore, further investigation is warranted to evaluate whether dietary emulsifier supplementation can improve the efficiency of fat utilization in the diet of yellow-feathered broilers. In the present study, the effects of adding emulsifier to the diet on lipid metabolism and the performance of yellow-feathered broilers were tested. A total of 240 yellow-feasted broilers (21-day-old) were randomly divided into 4 groups (6 replicates per group, 10 broilers per replicate, half male and half female within each replicate). The groups were as follows: the control group (fed with basal diet), the group fed with basal diet supplemented with 500 mg/kg emulsifier, the group fed with a reduced oil diet (reduced by 1%) supplemented with 500 mg/kg emulsifier, and the group fed with a reduced oil diet supplemented with 500 mg/kg emulsifier. The trial lasted for 42 days, during which the average daily feed intake, average daily gain, and feed-to-gain ratio were measured. Additionally, the expression levels of lipid metabolism-related genes in the liver, abdominal fat and each intestinal segment were assessed. RESULTS: The results showed that compared with the basal diet group, (1) The average daily gain of the basal diet + 500 mg/kg emulsifier group significantly increased (P < 0.05), and the half-even-chamber rate was significantly increased (P < 0.05); (2) The mRNA expression levels of Cd36, Dgat2, Apob, Fatp4, Fabp2, and Mttp in the small intestine were significantly increased (P < 0.05). (3) Furthermore, liver TG content significantly decreased (P < 0.05), and the mRNA expression level of Fasn in liver was significantly decreased (P < 0.05), while the expression of Apob, Lpl, Cpt-1, and Pparα significantly increased (P < 0.05). (4) The mRNA expression levels of Lpl and Fatp4 in adipose tissue were significantly increased (P < 0.05), while the expression of Atgl was significantly decreased (P < 0.05). (5) Compared with the reduced oil diet group, the half-evading rate and abdominal fat rate of broilers in the reduced oil diet + 500 mg/kg emulsifier group were significantly increased (P < 0.05), and the serum level of LDL-C increased significantly (P < 0.05)0.6) The mRNA expression levels of Cd36, Fatp4, Dgat2, Apob, and Mttp in the small intestine were significantly increased (P < 0.05). 7) The mRNA expression levels of Fasn and Acc were significantly decreased in the liver (P < 0.05), while the mRNA expression levels of Lpin1, Dgat2, Apob, Lpl, Cpt-1, and Pparα were significantly increased (P < 0.05). CONCLUSIONS: These results suggest that dietary emulsifier can enhance the fat utilization efficiency of broilers by increasing the small intestinal fatty acid uptake capacity, inhibiting hepatic fatty acid synthesis and promoting hepatic TG synthesis and transport capacity. This study provides valuable insights for the potential use of emulsifier supplementation to improve the performance of broiler chickens.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Emulsionantes , Metabolismo de los Lípidos , Animales , Pollos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Emulsionantes/farmacología , Alimentación Animal/análisis , Masculino , Femenino , Dieta/veterinaria , Hígado/metabolismo , Hígado/efectos de los fármacos
4.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542448

RESUMEN

The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome-gut-brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome-gut-brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases.


Asunto(s)
Vesículas Extracelulares , Eje Cerebro-Intestino , Sistema Nervioso Central , Ambiente , Alimentos
5.
Int J Obes (Lond) ; 47(2): 100-108, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36528726

RESUMEN

Obesity and substantially increased risk of metabolic diseases have become a global epidemic. microRNAs have attracted a great deal of attention as a potential therapeutic target for obesity. MiR-143 has been known to specifically promote adipocyte differentiation by downregulating extracellular signal-regulated kinase 5. Our latest study found that miR-143 knockout is against diet-induced obesity by promoting brown adipose tissue thermogenesis and inhibiting white adipose tissue adipogenesis. Moreover, LPS- or IL-6-induced inhibition of miR-143 expression in brown adipocytes promotes thermogenesis by targeting adenylate cyclase 9. In this review, we will summarize the expression and functions of miR-143 in different tissues, the influence of obesity on miR-143 in various tissues, the important role of adipose-derived miR-143 in the development of obesity, the role of miR-143 in immune cells and thermoregulation and discuss the potential significance and application prospects of miR-143 in obesity management.


Asunto(s)
MicroARNs , Obesidad , Humanos , Adipocitos Marrones/metabolismo , Adipogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/tratamiento farmacológico , Termogénesis/genética
6.
Cell Tissue Res ; 393(1): 119-132, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178193

RESUMEN

The hypertrophy and conversion of postnatal muscle fibers largely determine the yield and quality of meat, which is closely related to the economic value of pigs. MicroRNA (miRNA), as a kind of endogenous noncoding RNA molecule, is widely involved in myogenesis of livestock and poultry. The longissimus dorsi tissues of Lantang pigs at 1 and 90 days (LT1D and LT90D) were collected and profiled by miRNA-seq. We found 1871 and 1729 miRNA candidates in LT1D and LT90D samples, and 794 miRNAs were shared. We identified 16 differentially expressed miRNAs between two tested groups and explored the function of miR-493-5p inmyogenesis. The miR-493-5p promoted the proliferation and inhibited the differentiation of myoblasts. Using GO and KEGG analyses of 164 target genes of miR-493-5p, we found that ATP2A2, PPP3CA, KLF15, MED28, and ANKRD17 genes were related to muscle development. RT-qPCR detection showed that the expression level of ANKRD17 was highly expressed in LT1D libraries, and the double luciferase report test preliminarily proved that miR-493-5p and ANKRD17 have a directly targeting relationship. We established miRNA profiles for the longissimus dorsi tissues of 1-day-old and 90-day-old Lantang pigs and found that miR-493-5p was differentially expressed and associated with myogenesis by targeting ANKRD17 gene. Our results should serve as a reference for future studies on pork quality.


Asunto(s)
MicroARNs , Porcinos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Mioblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Desarrollo de Músculos/genética , Proliferación Celular/genética
7.
BMC Vet Res ; 19(1): 174, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759242

RESUMEN

BACKGROUND: The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn. RESULTS: The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria. Specifically, Corynebacterium_1, Lactobacillus, Rothia, Granulicatella, Corynebacteriales_unclassified, Corynebacterium, Globicatella and Actinomycetales_unclassified were found to be the dominant genera of Lantang group, while Clostridium_sensu_stricto_1, Escherichia-Shigella, Actinobacillus and Bifidobacterium were the dominant genera of Landrace. Based on the functional prediction of bacteria, we found that bacterial communities from Lantang samples had a significantly greater abundance pathways of fatty acid synthesis, protein synthesis, DNA replication, recombination, repair and material transport across membranes, while the carrier protein of pathogenic bacteria was more abundant in Landrace samples. CONCLUSIONS: Overall, there was a tremendous difference in the early intestinal flora composition between Landang and Landrace piglets, which was related to the breed characteristics and may be one of the reasons affecting the growth characteristics. However, more further extensive studies should be included to reveal the underlying relationship between early intestinal flora composition in different breeds and pig growth characteristics.


Asunto(s)
Microbioma Gastrointestinal , Animales , Porcinos , Animales Recién Nacidos , Fitomejoramiento , Bacterias/genética , Yeyuno/microbiología , ARN Ribosómico 16S/genética
8.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569544

RESUMEN

Exosomes are key mediators of intercellular communication. They are secreted by most cells and contain a cargo of protein-coding genes, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), which modulate recipient cell behavior. Herein, we collected blood samples from Holstein cows at days 30 (mid-lactation) and 250 (dry period) of pregnancy. Prolactin, follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone levels showed an obvious increase during D250. We then extracted exosomes from bovine blood samples and found that their sizes generally ranged from 100 to 200 nm. Further, Western blotting validated that they contained CD9, CD63, and TSG101, but not calnexin. Blood-derived exosomes significantly promoted the proliferation of mammary epithelial cells, particularly from D250. This change was accompanied by increased expression levels of proliferation marker proteins PCNA, cyclin D, and cyclin E, as detected by EdU assay, cell counting kit-8 assay, and flow cytometric cell cycle analysis. Moreover, we treated mammary epithelial cells with blood-derived exosomes that were isolated from the D30 and D250 periods. And RNA-seq of two groups of cells led to the identification of 839 differentially expressed genes that were significantly enriched in KEGG signaling pathways associated with apoptosis, cell cycle and proliferation. In bovine blood-derived exosomes, we found 12,747 protein-coding genes, 31,181 lncRNAs, 9374 transcripts of uncertain coding potential (TUCP) candidates, and 460 circRNAs, and 32 protein-coding genes, 806 lncRNAs, 515 TUCP candidates, and 45 circRNAs that were differentially expressed between the D30 and D250 groups. We selected six highly expressed and four differentially expressed circRNAs to verify their head-to-tail splicing using PCR and Sanger sequencing. To summarize, our findings improve our understanding of the key roles of blood-derived exosomes and the characterization of exosomal circRNAs in mammary gland development.


Asunto(s)
Exosomas , MicroARNs , ARN Largo no Codificante , Embarazo , Femenino , Bovinos , Animales , ARN Circular/genética , ARN Circular/metabolismo , Exosomas/metabolismo , ARN Largo no Codificante/metabolismo , Lactancia , Transducción de Señal , MicroARNs/genética
9.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901991

RESUMEN

Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.


Asunto(s)
Exosomas , MicroARNs , Ratones , Animales , PPAR gamma/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , MicroARNs/genética , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Exosomas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo
10.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003364

RESUMEN

Mammary fat plays a profound role in the postnatal development of mammary glands. However, the specific types (white, brown, or beige) of adipocytes in mammary fat and their potential regulatory effects on modulating mammary gland development remain poorly understood. This study aimed to investigate the role of the browning of mammary fat on pubertal mammary gland development and explore the underlying mechanisms. Thus, the mammary gland development and the serum lipid profile were evaluated in mice treated with CL316243, a ß3-adrenoceptor agonist, to induce mammary fat browning. In addition, the proliferation of HC11 cells co-cultured with brown adipocytes or treated with the altered serum lipid metabolite was determined. Our results showed that the browning of mammary fat by injection of CL316243 suppressed the pubertal development of mice mammary glands, accompanied by the significant elevation of serum dioleoylphosphocholine (DOPC). In addition, the proliferation of HC11 was repressed when co-cultured with brown adipocytes or treated with DOPC. Furthermore, DOPC suppressed the activation of the PI3K/Akt pathway, while the DOPC-inhibited HC11 proliferation was reversed by SC79, an Akt activator, suggesting the involvement of the PI3K/Akt pathway in the DOPC-inhibited proliferation of HC11. Together, the browning of mammary fat suppressed the development of the pubertal mammary gland, which was associated with the elevated serum DOPC and the inhibition of the PI3K/Akt pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Adipocitos Marrones/metabolismo , Lecitinas/farmacología
11.
BMC Genomics ; 23(1): 294, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410129

RESUMEN

BACKGROUND: Long-term artificial selection for growth rate and lean meat rate has eventually led to meat quality deterioration. Muscle fiber type is a key factor that markedly affects meat quality. circRNAs have been reported to participate in diverse biological activities, including myofiber growth and development; thus, we herein compared porcine circRNA transcriptome between oxidative and glycolytic muscle tissues. RESULTS: Longissimus thoracis muscle tissues were obtained from Lantang and Landrace pigs at birth (LT1D and LW1D, respectively) and 90 postnatal days (LT90D and LW90D, respectively). Hematoxylin and eosin staining and quantitative real-time PCR revealed that all structural traits of the muscle showed large variations between different breeds and growth stages. In total, 329 known miRNAs and 42,081 transcript candidates were identified; 6,962 differentially expressed transcripts were found to play a key role in myogenesis by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. In addition, 3,352 circRNAs were identified using five predicting algorithms, and 104 circRNA candidates were differentially expressed. Integrated analysis of differentially expressed miRNAs, mRNAs, and circRNAs led to the identification of 777, 855, and 22 convincing ceRNA interactions in LT1D vs. LT90D, LW1D vs. LW90D, and LT90D vs. LW90D, respectively. Finally, we identified a circRNA candidate circKANSL1L, which showed high homology between mice and pigs, and it was found to inhibit the proliferation of C2C12 cells but promote their differentiation. CONCLUSIONS: We identified genome-wide circRNAs in 0- and 90-day-old Lantang and Landrace pigs by RNA-seq and found that circRNAs were abundant, differentially expressed, and associated with myogenesis. Our results should serve as a reference for future studies on pork quality.


Asunto(s)
MicroARNs , ARN Circular , Animales , Perfilación de la Expresión Génica/métodos , Ratones , MicroARNs/genética , Desarrollo de Músculos/genética , ARN Circular/genética , Porcinos/genética , Transcriptoma
12.
FASEB J ; 35(4): e21444, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749901

RESUMEN

Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.


Asunto(s)
Desnervación , Músculo Esquelético/inervación , Atrofia Muscular/metabolismo , FN-kappa B/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Regulación de la Expresión Génica , Hipertrofia , Inflamación/genética , Inflamación/metabolismo , Metilhistidinas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , FN-kappa B/genética , Procolágeno-Prolina Dioxigenasa/genética , Puromicina , Células Satélite del Músculo Esquelético/fisiología , Transducción de Señal
13.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36287029

RESUMEN

Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.

14.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163336

RESUMEN

(1) Background: As a novel type of non-coding RNA with a stable closed-loop structure, circular RNA (circRNA) can interact with microRNA (miRNA) and influence the expression of miRNA target genes. However, circRNA involved in pituitary growth hormone (GH) regulation is poorly understood. Our previous study revealed protein kinase C alpha (PRKCA) as the target gene of miR-709. Currently, the expression and function of rno_circRNA_0001004 in the rat pituitary gland is not clarified; (2) Methods: In this study, both bioinformatics analysis and dual-luciferase report assays showed a target relationship between rno_circRNA_0001004 and miR-709. Furthermore, the rno_circRNA_0001004 overexpression vector and si-circ_0001004 were constructed and transfected into GH3 cells; (3) Results: We found that rno_circRNA_0001004 expression was positively correlated with the PRKCA gene and GH expression levels, while it was negatively correlated with miR-709. In addition, overexpression of rno-circ_0001004 also promoted proliferation and relieved the inhibition of miR-709 in GH3 cells; (4) Conclusions: Our findings show that rno_circ_0001004 acts as a novel sponge for miR-709 to regulate GH synthesis and cell proliferation, and are the first case of discovery of the regulatory role of circRNA_0001004 in pituitary GH.


Asunto(s)
Proliferación Celular , MicroARNs , ARN Circular , Animales , Proliferación Celular/genética , Hormona del Crecimiento/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Ratas
15.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430282

RESUMEN

Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.


Asunto(s)
Adipocitos Marrones , MicroARNs , Animales , Ratones , Adipocitos Marrones/metabolismo , Fiebre/inducido químicamente , Fiebre/genética , Fiebre/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Termogénesis/genética
16.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361843

RESUMEN

Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) thermogenesis has emerged as an attractive tool for anti-obesity. Although miR-143 has been reported to promote white adipocyte differentiation, its role in BAT remains unclear. In our study, we found that during HFD-induced obesity, the expression of miR-143 in BAT was significantly reduced, and the expression of miR-143 in WAT first increased and then decreased. Knockout (KO) of miR-143 with CRISPR/Cas9 did not affect the energy metabolism of normal diet fed mice and brown adipocyte differentiation but inhibited the differentiation of white adipocytes. Importantly, during high fat diet-induced obesity, miR-143KO significantly reduced body weight, and improved energy expenditure, insulin sensitivity, and glucose tolerance. Further exploration showed that miR-143KO reduced the weight of adipose tissue, promoted mitochondrial number and functions, induced thermogenesis and lipolysis of BAT, increased lipolysis, and inhibited lipogenesis of white adipose tissue (WAT). Our study considerably improves our collective understanding of the function of miR-143 in adipose tissue and its potential significance in anti-obesity and provides a new avenue for the management of obesity through the inhibition of miR-143 in BAT and WAT.


Asunto(s)
Tejido Adiposo Pardo , MicroARNs , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Adipogénesis/genética , Ratones Noqueados , Termogénesis/genética , Tejido Adiposo Blanco/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , MicroARNs/genética , MicroARNs/metabolismo , Ratones Endogámicos C57BL
17.
EMBO Rep ; 20(9): e47892, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31318145

RESUMEN

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.


Asunto(s)
Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ácido Succínico/farmacología , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Cadenas Pesadas de Miosina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
18.
BMC Vet Res ; 17(1): 348, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772402

RESUMEN

BACKGROUND: Herbal tea residue (HTR) is generally considered to be the waste of herbal tea beverage production while it still retains rich nutrients and active substances. The main aim of the present study was to investigate the effect of fermentation technology on improving the quality of HTRs, and focus on the fermented HTR-induced alleviation of summer heat stress in fattening cattle. RESULTS: In this study, the waste HTR was fermented and then fed to a total of 45 fattening cattle that were divided into 3 groups (fermented HTR replaced 0, 15, 30% of the forage component of the diet), and the feeding experiment was lasted for 40 days. The physiological indexes, growth performance and fecal microbiota of fattening cattle were evaluated and results showed that fermented HTR could effectively reduce the respiratory rate and rectal temperature of fattening cattle under heat stress, increase the daily feed intake and daily gain, and improve the antioxidant content and blood immune index. In addition, we studied the fecal microbiota composition of 6 fattening cattle in control and 30% HTR substitution groups and found fermented HTR significantly changed the composition of fecal microbiota and increased microbial diversity, and correlation analysis suggested that the bacteria were closely related to fecal SCFA levels of fattening cattle under heat stress. CONCLUSIONS: In this study, fermented HTR replaced 30% of the forage component of the diet that can change the intestine microorganisms, maintain health and alleviate the heat stress of fattening cattle.


Asunto(s)
Bebidas , Enfermedades de los Bovinos/terapia , Dieta/veterinaria , Industria de Alimentos , Trastornos de Estrés por Calor/veterinaria , Residuos Industriales , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/clasificación , Bacterias/genética , Bovinos , Enfermedades de los Bovinos/prevención & control , Heces/microbiología , Femenino , Fermentación , Trastornos de Estrés por Calor/prevención & control , Trastornos de Estrés por Calor/terapia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
19.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884879

RESUMEN

MiR-143 play an important role in hepatocellular carcinoma and liver fibrosis via inhibiting hepatoma cell proliferation. DNA methyltransferase 3 alpha (DNMT3a), as a target of miR-143, regulates the development of primary organic solid tumors through DNA methylation mechanisms. However, the effect of miR-143 on DNA methylation profiles in liver is unclear. In this study, we used Whole-Genome Bisulfite Sequencing (WGBS) to detect the differentially methylated regions (DMRs), and investigated DMR-related genes and their enriched pathways by miR-143. We found that methylated cytosines increased 0.19% in the miR-143 knock-out (KO) liver fed with high-fat diet (HFD), compared with the wild type (WT). Furthermore, compared with the WT group, the CG methylation patterns of the KO group showed lower CG methylation levels in CG islands (CGIs), promoters and hypermethylation in CGI shores, 5'UTRs, exons, introns, 3'UTRs, and repeat regions. A total of 984 DMRs were identified between the WT and KO groups consisting of 559 hypermethylation and 425 hypomethylation DMRs. Furthermore, DMR-related genes were enriched in metabolism pathways such as carbon metabolism (serine hydroxymethyltransferase 2 (Shmt2), acyl-Coenzyme A dehydrogenase medium chain (Acadm)), arginine and proline metabolism (spermine synthase (Sms), proline dehydrogenase (Prodh2)) and purine metabolism (phosphoribosyl pyrophosphate synthetase 2 (Prps2)). In summary, we are the first to report the change in whole-genome methylation levels by miR-143-null through WGBS in mice liver, and provide an experimental basis for clinical diagnosis and treatment in liver diseases, indicating that miR-143 may be a potential therapeutic target and biomarker for liver damage-associated diseases and hepatocellular carcinoma.


Asunto(s)
Metilación de ADN , Hígado/metabolismo , MicroARNs/metabolismo , Secuenciación Completa del Genoma , Animales , Islas de CpG , Epigénesis Genética , Epigenómica , Secuencia Rica en GC , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Regiones Promotoras Genéticas , Sulfitos
20.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 72-79, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33021002

RESUMEN

Moringa oleifera and Morus alba leaves are nutritious non-traditional feed ingredients containing bioactive substances. This study was to evaluate the potential application of dietary Moringa and Morus leaf powder on the growth traits, carcass characteristics and meat quality of finishing pigs. Moringa did not alter growth performance or carcass characteristics, but it decreased meat b* value, increased MyHCIIa and decreased MyHCIIx mRNA levels, and increased CP and concentrations of Ala, Thr, Ile, Lys and Pro in longissimus thoracis. Morus increased final BW, ADFI and ADG, decreased F/G ratio, improved slaughter weight, carcass weight, carcass yield and meat a* value, and decreased shear force, drip loss, MyHCIIx and MyHCIIb mRNA levels, and increased MyHCI and MyHCIIa mRNA levels. Morus also increased CP, Glu, Gly, Ala, Arg, Ile, Phe, Pro, Ser, Tyr and Asp, and C16:1, C18:1n9c, C20:4n6, C18:3n3, C20:3n3, C22:1n9 and n-3 PUFA, but decreased C12:0 and C16:0. In summary, Morus improved the parameters and held great potential as an unconventional feed crop.


Asunto(s)
Moringa oleifera , Morus , Carne de Cerdo , Carne Roja , Alimentación Animal/análisis , Animales , Composición Corporal , Suplementos Dietéticos/análisis , Carne/análisis , Hojas de la Planta , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA