Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Angew Chem Int Ed Engl ; 63(23): e202402509, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38588046

RESUMEN

Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.


Asunto(s)
Antibacterianos , Membranas Artificiales , Nylons , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Nylons/química , Purificación del Agua/métodos , Filtración/métodos , Permeabilidad
2.
Int J Neurosci ; : 1-9, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35815432

RESUMEN

Objective: Stroke is the leading cause of disability worldwide. Traditionally, doctors assess stroke rehabilitation assessment, which can be subjective. Therefore, an objective assessment method is required.Methods: In this context, we investigated the changes in brain functional connectivity patterns and corticomuscular coupling in stroke patients during rehabilitation. In this study, electroencephalogram (EEG) and electromyogram (EMG) of stroke patients were collected synchronously at baseline(BL), two weeks after BL, and four weeks after BL. A brain functional network was established, and the corticomuscular coupling relationship was calculated using phase transfer entropy (PTE).Results: We found that during the rehabilitation of stroke patients, the overall connection of the brain functional network was strengthened, and the network characteristic value increased. The average corticomuscular PTE appeared to first decrease and subsequently increase, and the PTE increase in the frontal lobe was significant.Value: In this study, PTE was used for the first time to analyze the relationship between EEG signals in patients with hemiplegia. We believe that our findings contribute to evaluating the rehabilitation of stroke patients with hemiplegia.

3.
Neural Comput ; 32(4): 741-758, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32069173

RESUMEN

Surface electromyography (sEMG) is an electrophysiological reflection of skeletal muscle contractile activity that can directly reflect neuromuscular activity. It has been a matter of research to investigate feature extraction methods of sEMG signals. In this letter, we propose a feature extraction method of sEMG signals based on the improved small-world leaky echo state network (ISWLESN). The reservoir of leaky echo state network (LESN) is connected by a random network. First, we improved the reservoir of the echo state network (ESN) by these networks and used edge-added probability to improve these networks. That idea enhances the adaptability of the reservoir, the generalization ability, and the stability of ESN. Then we obtained the output weight of the network through training and used it as features. We recorded the sEMG signals during different activities: falling, walking, sitting, squatting, going upstairs, and going downstairs. Afterward, we extracted corresponding features by ISWLESN and used principal component analysis for dimension reduction. At the end, scatter plot, the class separability index, and the Davies-Bouldin index were used to assess the performance of features. The results showed that the ISWLESN clustering performance was better than those of LESN and ESN. By support vector machine, it was also revealed that the performance of ISWLESN for classifying the activities was better than those of ESN and LESN.


Asunto(s)
Electromiografía , Músculo Esquelético/fisiología , Redes Neurales de la Computación , Algoritmos , Humanos
4.
Sensors (Basel) ; 21(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375501

RESUMEN

As an important research direction of human-computer interaction technology, gesture recognition is the key to realizing sign language translation. To improve the accuracy of gesture recognition, a new gesture recognition method based on four channel surface electromyography (sEMG) signals is proposed. First, the S-transform is applied to four channel sEMG signals to enhance the time-frequency detail characteristics of the signals. Then, multiscale singular value decomposition is applied to the multiple time-frequency matrix output of S-transform to obtain the time-frequency joint features with better robustness. The corresponding singular value permutation entropy is calculated as the eigenvalue to effectively reduce the dimension of multiple eigenvectors. The gesture features are used as input into the deep belief network for classification, and nine kinds of gestures are recognized with an average accuracy of 93.33%. Experimental results show that the multiscale singular value permutation entropy feature is especially suitable for the pattern classification of the deep belief network.


Asunto(s)
Gestos , Reconocimiento de Normas Patrones Automatizadas , Electromiografía , Entropía , Humanos , Procesamiento de Señales Asistido por Computador
5.
Sensors (Basel) ; 18(2)2018 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-29462968

RESUMEN

Surface electromyography (sEMG) signals are commonly used in activity monitoring and rehabilitation applications as they reflect effectively the motor intentions of users. However, real-time sEMG signals are non-stationary and vary to a large extent within the time frame of signals. Although previous studies have focused on the issues, their results have not been satisfactory. Therefore, we present a new method of conducting feature-level fusion to obtain a new feature space for sEMG signals. Eight activities of daily life (ADLs), including falls, were performed to obtain raw data from EMG signals from the lower limb. A feature set combining the time domain, time-frequency domain, and entropy domain was applied to the raw data to establish an initial feature space. A new projection method, the weighting genetic algorithm for GCCA (WGA-GCCA), was introduced to obtain the final feature space. Different tests were carried out to evaluate the performance of the new feature space. The new feature space created with the WGA-GCCA effectively reduced the dimensions and selected the best feature vectors dynamically while improving monotonicity. The Davies-Bouldin index (DBI) based on fuzzy c-means algorithms of the space obtained the lowest value compared with several fusion methods. It also achieved the highest accuracy when applied to support vector machine classifier.


Asunto(s)
Electromiografía , Algoritmos , Entropía , Actividades Humanas , Humanos , Máquina de Vectores de Soporte
6.
Sensors (Basel) ; 17(6)2017 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-28555016

RESUMEN

As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.


Asunto(s)
Dispositivos Electrónicos Vestibles , Accidentes por Caídas , Actividades Cotidianas , Algoritmos , Electromiografía , Humanos , Reconocimiento de Normas Patrones Automatizadas , Máquina de Vectores de Soporte
7.
Artículo en Inglés | MEDLINE | ID: mdl-38946233

RESUMEN

Motor imagery (MI) stands as a powerful paradigm within Brain-Computer Interface (BCI) research due to its ability to induce changes in brain rhythms detectable through common spatial patterns (CSP). However, the raw feature sets captured often contain redundant and invalid information, potentially hindering CSP performance. Methodology-wise, we propose the Information Fusion for Optimizing Temporal-Frequency Combination Pattern (IFTFCP) algorithm to enhance raw feature optimization. Initially, preprocessed data undergoes simultaneous processing in both time and frequency domains via sliding overlapping time windows and filter banks. Subsequently, we introduce the Pearson-Fisher combinational method along with Discriminant Correlation Analysis (DCA) for joint feature selection and fusion. These steps aim to refine raw electroencephalogram (EEG) features. For precise classification of binary MI problems, an Radial Basis Function (RBF)-kernel Support Vector Machine classifier is trained. To validate the efficacy of IFTFCP and evaluate it against other techniques, we conducted experimental investigations using two EEG datasets. Results indicate a notably superior classification performance, boasting an average accuracy of 78.14% and 85.98% on dataset 1 and dataset 2, which is better than other methods outlined in this article. The study's findings suggest potential benefits for the advancement of MI-based BCI strategies, particularly in the domain of feature fusion.

8.
Front Neurosci ; 18: 1404816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915308

RESUMEN

Objective: Nowadays, increasingly studies are attempting to analyze strokes in advance. The identification of brain damage areas is essential for stroke rehabilitation. Approach: We proposed Electroencephalogram (EEG) multi-modal frequency features to classify the regions of stroke injury. The EEG signals were obtained from stroke patients and healthy subjects, who were divided into right-sided brain injury group, left-sided brain injury group, bilateral brain injury group, and healthy controls. First, the wavelet packet transform was used to perform a time-frequency analysis of the EEG signal and extracted a set of features (denoted as WPT features). Then, to explore the nonlinear phase coupling information of the EEG signal, phase-locked values (PLV) and partial directed correlations (PDC) were extracted from the brain network, and the brain network produced a second set of features noted as functional connectivity (FC) features. Furthermore, we fused the extracted multiple features and used the resnet50 convolutional neural network to classify the fused multi-modal (WPT + FC) features. Results: The classification accuracy of our proposed methods was up to 99.75%. Significance: The proposed multi-modal frequency features can be used as a potential indicator to distinguish regions of brain injury in stroke patients, and are potentially useful for the optimization of decoding algorithms for brain-computer interfaces.

9.
Med Biol Eng Comput ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514500

RESUMEN

The extraction of effective classification features from electroencephalogram (EEG) signals in motor imagery is a popular research topic. The Common Spatial Pattern (CSP) algorithm is widely employed in this field. However, the performance of the traditional CSP method depends significantly on the choice of a specific frequency band and channel number of EEG data. Furthermore, inter-class variance among these frequency bands and the limited number of available EEG channels can adversely affect the CSP algorithm's ability to extract meaningful features from the relevant signal frequency bands. We hypothesize that multiple Intrinsic Mode Functions (IMFS), into which the raw EEG signal is decomposed, can better capture the non-Gaussian characteristics of the signal, thus compensating for the limitations of the CSP algorithm when dealing with nonlinear and non-Gaussian distributed data with few channels. Therefore, this paper proposes a novel method that integrates Variational Mode Decomposition (VMD), Phase Space Reconstruction (PSR), and the CSP algorithm to address these issues. VMD is used to filter and enhance the quality of the collected data, PSR is employed to increase the effective data channels (data augmentation), and the subsequent CSP filtering can obtain signals with spatial features, which are decoded by Convolutional Neural Networks (CNN) for action decoding. This study utilizes self-collected EEG data to demonstrate that the new method can achieve a good classification accuracy of 82.30% on average, confirming the improved algorithm's effectiveness and feasibility. Furthermore, this study conducted validation on the publicly available BCI Competition IV dataset 2b, demonstrating an average classification accuracy of 87.49%.

10.
J Neurosci Methods ; 405: 110098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423364

RESUMEN

BACKGROUND: Cortico-muscular coherence (CMC) between the cerebral cortex and muscle activity is an effective tool for studying neural communication in the motor control system. To accurately evaluate the coherence between electroencephalogram (EEG) and electromyogram (EMG) signals, it is necessary to accurately calculate the time delay between physiological signals to ensure signal synchronization. NEW METHOD: We proposed a new delay estimation method, named wavelet coherence time lag (WCTL) and the significant increase areas (SIA) index as a measure of the specific region enhancement effect of the magnitude squared coherence (MSC) image. RESULTS: The grip strength level had a small effect on the information transmission time from the cortex to the muscles, while the transmission time from the cortex to different muscle channels was different for the same task. A positive correlation was found between the grip strength level and the SIA index on the ß band of C3-B and the α and ß bands of C3-FDS. COMPARISON WITH EXISTING METHOD: The WCTL method was found to accurately calculate the delay time even when the number of repeated segments was low in a simple motor control model, and the results were more accurate than the rate of voxels change (RVC) and CMC with time lag (CMCTL) methods. CONCLUSIONS: The WCTL is an effective method for detecting the transmission time of information between the cortex and muscles, laying the foundation for future rehabilitation treatment for stroke patients.


Asunto(s)
Corteza Motora , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Electromiografía/métodos , Electroencefalografía/métodos , Fuerza de la Mano , Corteza Motora/fisiología
11.
Med Biol Eng Comput ; 61(7): 1675-1686, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36853396

RESUMEN

Accurate continuous estimation of multi-DOF movement is crucial for simultaneous control of advanced myoelectric prosthetic. The decoupling of multi-DOF is a challenge for continuous estimation. In this paper, we propose a model combined non-negative matrix factorization (NMF) with Hadamard product and L2 regulation to suppress the non-active DOF and achieve the multi-DOF movement continuous estimation. The L2 regulation of non-active DOF activation coefficient was added to the object function of NMF with the benefit of Hadamard product. The angles were estimated by a linear combination of the activation coefficients. We performed a set of continuous estimation experiments for single-DOF and multi-DOF movements of wrist flexion/extend and hand open/close. The results illustrated that the novel model could suppress non-active DOF in single-DOF movement better than other methods based on muscle synergy theory. Moreover, we investigated the robustness of suppression effect and the similarity of synergy matrices at different speeds for NMF-based methods, and the results showed that the proposed method had a superior performance.


Asunto(s)
Músculo Esquelético , Extremidad Superior , Electromiografía/métodos , Músculo Esquelético/fisiología , Muñeca/fisiología , Movimiento/fisiología
12.
PLoS One ; 18(12): e0295398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060609

RESUMEN

Sign language (SL) has strong structural features. Various gestures and the complex trajectories of hand movements bring challenges to sign language recognition (SLR). Based on the inherent correlation between gesture and trajectory of SL action, SLR is organically divided into gesture-based recognition and gesture-related movement trajectory recognition. One hundred and twenty commonly used Chinese SL words involving 9 gestures and 8 movement trajectories, are selected as research and test objects. The method based on the amplitude state of surface electromyography (sEMG) signal and acceleration signal is used for vocabulary segmentation. The multi-sensor decision fusion method of coupled hidden Markov model is used to complete the recognition of SL vocabulary, and the average recognition rate is 90.41%. Experiments show that the method of sEMG signal and motion information fusion has good practicability in SLR.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Lengua de Signos , Humanos , Electromiografía , Gestos , Mano , China , Algoritmos
13.
Med Biol Eng Comput ; 61(5): 951-965, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36662378

RESUMEN

The visual movement illusion (VMI) is a subjective experience. This illusion is produced by watching the subject's motion video. At the same time, VMI evokes awareness of body ownership. We applied the power spectral density (PSD) matrix and the partial directed correlation (PDC) matrix to build the PPDC matrix for the γ2 band (34-98.5 Hz), combining cerebral cortical and musculomotor cortical complexity and PPDC to quantify the degree of body ownership. Thirty-five healthy subjects were recruited to participate in this experiment. The subjects' electroencephalography (EEG) and surface electromyography (sEMG) data were recorded under resting conditions, observation conditions, illusion conditions, and actual seated front-kick movements. The results show the following: (1) VMI activates the cerebral cortex to some extent; (2) VMI enhances cortical muscle excitability in the rectus femoris and medial vastus muscles; (3) VMI induces a sense of body ownership; (4) the use of PPDC values, fuzzy entropy values of muscles, and fuzzy entropy values of the cerebral cortex can quantify whether VMI induces awareness of body ownership. These results illustrate that PPDC can be used as a biomarker to show that VMI affects changes in the cerebral cortex and as a quantitative tool to show whether body ownership awareness arises.


Asunto(s)
Ilusiones , Humanos , Electromiografía , Ilusiones/fisiología , Propiedad , Electroencefalografía , Movimiento/fisiología , Extremidad Inferior , Mano/fisiología
14.
J Neural Eng ; 20(5)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37683652

RESUMEN

Objective. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.Approach. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.Main result. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.Significance. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Humanos , Encéfalo , Análisis por Conglomerados , Simulación por Computador , Corteza Somatosensorial
15.
Front Neurosci ; 17: 1240929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811323

RESUMEN

Introduction: Restless legs syndrome (RLS) is a common sensorimotor disorder characterized by an irrepressible urge to move the legs and frequently accompanied by unpleasant sensations in the legs. The pathophysiological mechanisms underlying RLS remain unclear, and RLS is hypothesized to be associated with alterations in white matter tracts. Methods: Diffusion MRI is a unique noninvasive method widely used to study white matter tracts in the human brain. Thus, diffusion-weighted images were acquired from 18 idiopathic RLS patients and 31 age- and sex-matched healthy controls (HCs). Whole brain tract-based spatial statistics (TBSS) and atlas-based analyzes combining crossing fiber-based metrics and tensor-based metrics were performed to investigate the white matter patterns in individuals with RLS. Results: TBSS analysis revealed significantly higher fractional anisotropy (FA) and partial volume fraction of primary (F1) fiber populations in multiple tracts associated with the sensorimotor network in patients with RLS than in HCs. In the atlas based analysis, the bilateral anterior thalamus radiation, bilateral corticospinal tract, bilateral inferior fronto-occipital fasciculus, left hippocampal cingulum, left inferior longitudinal fasciculus, and left uncinate fasciculus showed significantl increased F1, but only the left hippocampal cingulum showed significantly higher FA. Discussion: The results demonstrated that F1 identified extensive alterations in white matter tracts compared with FA and confirmed the hypothesis that crossing fiber-based metrics are more sensitive than tensor-based metrics in detecting white matter abnormalities in RLS. The present findings provide evidence that the increased F1 metric observed in sensorimotor tracts may be a critical neural substrate of RLS, enhancing our understanding of the underlying pathological changes.

16.
Med Biol Eng Comput ; 61(12): 3303-3317, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37667074

RESUMEN

Transcranial direct current stimulation (tDCS) is an emerging brain intervention technique that has gained growing attention in recent years in the rehabilitation area. In this paper, we investigated the efficacy of tDCS in the rehabilitation process of stroke patients, utilizing corticomuscular coupling (CMC) and brain functional network analysis. Specifically, we examined changes in CMC relationships between the treatment and control groups before and after rehabilitation by transfer entropy (TE), and constructed brain functional networks by TE. We further calculated features of the functional networks, including node degree, global efficiency, clustering coefficient, characteristic path length, and small world index. Our results demonstrate that CMC in patients increased significantly after treatment, with greater improvements in the tDCS group, particularly within the beta and gamma bands. In addition, the functional brain network analysis revealed enhanced connectivity between brain regions, improved information processing capacity, and increased transmission efficiency in patients as their condition improved. Notably, treatment with tDCS resulted in more significant improvements than the sham group, with a statistically significant difference observed after rehabilitation treatment (p < 0.05). These findings provide compelling evidence regarding the role of tDCS in the treatment of stroke and highlight the potential of this approach in stroke rehabilitation. The use of tDCS for therapeutic interventions in stroke rehabilitation can significantly improve the coupling of patients' functional brain networks. Also, using Transfer Entropy (TE) as a characteristic of CMC, tDCS was found to significantly enhance patients' TE, i.e. enhanced CMC.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Encéfalo
17.
Math Biosci Eng ; 20(6): 10530-10551, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37322947

RESUMEN

Changes in the functional connections between the cerebral cortex and muscles can evaluate motor function in stroke rehabilitation. To quantify changes in functional connections between the cerebral cortex and muscles, we combined corticomuscular coupling and graph theory to propose dynamic time warped (DTW) distances for electroencephalogram (EEG) and electromyography (EMG) signals as well as two new symmetry metrics. EEG and EMG data from 18 stroke patients and 16 healthy individuals, as well as Brunnstrom scores from stroke patients, were recorded in this paper. First, calculate DTW-EEG, DTW-EMG, BNDSI and CMCSI. Then, the random forest algorithm was used to calculate the feature importance of these biological indicators. Finally, based on the results of feature importance, different features were combined and validated for classification. The results showed that the feature importance was from high to low as CMCSI/BNDSI/DTW-EEG/DTW-EMG, while the feature combination with the highest accuracy was CMCSI+BNDSI+DTW-EEG. Compared to previous studies, combining the CMCSI+BNDSI+DTW-EEG features of EEG and EMG achieved better results in the prediction of motor function rehabilitation at different levels of stroke. Our work implies that the establishment of a symmetry index based on graph theory and cortical muscle coupling has great potential in predicting stroke recovery and promises to have an impact on clinical research applications.


Asunto(s)
Músculo Esquelético , Accidente Cerebrovascular , Humanos , Electromiografía/métodos , Movimiento , Electroencefalografía , Biomarcadores
18.
Artículo en Inglés | MEDLINE | ID: mdl-37083516

RESUMEN

Motor imagery (MI) electroencephalogram (EEG) signals have an important role in brain-computer interface (BCI) research. However, effectively decoding these signals remains a problem to be solved. Traditional EEG signal decoding algorithms rely on parameter design to extract features, whereas deep learning algorithms represented by convolution neural network (CNN) can automatically extract features, which is more suitable for BCI applications. However, when EEG data is taken as input in raw time series, traditional 1D-CNNs are unable to acquire both frequency domain and channel association information. To solve this problem, this study proposes a novel algorithm by inserting two modules into CNN. One is the Filter Band Combination (FBC) Module, which preserves as many frequency domain features as possible while maintaining the time domain characteristics of EEG. Another module is Multi-View structure that can extract features from the output of FBC module. To prevent over fitting, we used a cosine annealing algorithm with restart strategy to update the learning rate. The proposed algorithm was validated on the BCI competition dataset and the experiment dataset, using accuracy, standard deviation, and kappa coefficient. Compared with traditional decoding algorithms, our proposed algorithm achieved an improvement of the maximum average correct rate of 6.6% on the motion imagery 4-classes recognition mission and 11.3% on the 2-classes classification task.


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Humanos , Redes Neurales de la Computación , Algoritmos , Electroencefalografía
19.
Brain Sci ; 12(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35741639

RESUMEN

Corticomuscular functional coupling reflects the neuronal communication between cortical oscillations and muscle activity. Although the motor cortex is significantly involved in complex motor tasks, there is still no detailed understanding of the cortical contribution during such tasks. In this paper, we first propose a vine copula model to describe corticomuscular functional coupling and we construct the brain muscle function network. First, we recorded surface electromyography (sEMG) and electroencephalography (EEG) signals corresponding to the hand open, hand close, wrist flexion, and wrist extension motions of 12 participants during the initial experiments. The pre-processed signals were translated into the marginal density functions of different channels through the generalized autoregressive conditional heteroscedasticity model. Subsequently, we calculated the Kendall rank correlation coefficient, and used the R-vine model to decompose the multi-dimensional marginal density function into two-dimensional copula coefficient to determine the structure of the R-vine. Finally, we used the normalized adjacency matrix to structure the corticomuscular network for each hand motion considered. Based on the adjacency matrix, we found that the Kendall rank correlation coefficient between EEG and EMG was low. Moreover, a significant difference was observed in the correlation between the C3 and EMG signals for the different hand-motion activities. We also observed two core nodes in the networks corresponding to the four activities when the vine copula model was applied. Moreover, there was a large difference in the connections of the network models corresponding to the different hand-motion activities. Therefore, we believe that our approach is sufficiently accurate in identifying and classifying motor tasks.

20.
Brain Sci ; 12(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892418

RESUMEN

The use of electroencephalography to recognize human emotions is a key technology for advancing human-computer interactions. This study proposes an improved deep convolutional neural network model for emotion classification using a non-end-to-end training method that combines bottom-, middle-, and top-layer convolution features. Four sets of experiments using 4500 samples were conducted to verify model performance. Simultaneously, feature visualization technology was used to extract the three-layer features obtained by the model, and a scatterplot analysis was performed. The proposed model achieved a very high accuracy of 93.7%, and the extracted features exhibited the best separability among the tested models. We found that adding redundant layers did not improve model performance, and removing the data of specific channels did not significantly reduce the classification effect of the model. These results indicate that the proposed model allows for emotion recognition with a higher accuracy and speed than the previously reported models. We believe that our approach can be implemented in various applications that require the quick and accurate identification of human emotions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA