Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 119(4): 2001-2020, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943614

RESUMEN

While it is known that increased dissolved CO2 concentrations and rising sea surface temperature (ocean warming) can act interactively on marine phytoplankton, the ultimate molecular mechanisms underlying this interaction on a long-term evolutionary scale are relatively unexplored. Here, we performed transcriptomics and quantitative metabolomics analyses, along with a physiological trait analysis, on the marine diatom Thalassiosira weissflogii adapted for approximately 3.5 years to warming and/or high CO2 conditions. We show that long-term warming has more pronounced impacts than elevated CO2 on gene expression, resulting in a greater number of differentially expressed genes (DEGs). The largest number of DEGs was observed in populations adapted to warming + high CO2, indicating a potential synergistic interaction between these factors. We further identified the metabolic pathways in which the DEGs function and the metabolites with significantly changed abundances. We found that ribosome biosynthesis-related pathways were upregulated to meet the increased material and energy demands after warming or warming in combination with high CO2. This resulted in the upregulation of energy metabolism pathways such as glycolysis, photorespiration, the tricarboxylic acid cycle, and the oxidative pentose phosphate pathway, as well as the associated metabolites. These metabolic changes help compensate for reduced photochemical efficiency and photosynthesis. Our study emphasizes that the upregulation of ribosome biosynthesis plays an essential role in facilitating the adaptation of phytoplankton to global ocean changes and elucidates the interactive effects of warming and high CO2 on the adaptation of marine phytoplankton in the context of global change.


Asunto(s)
Dióxido de Carbono , Diatomeas , Diatomeas/metabolismo , Diatomeas/genética , Diatomeas/fisiología , Dióxido de Carbono/metabolismo , Fitoplancton/genética , Fitoplancton/fisiología , Fitoplancton/metabolismo , Adaptación Fisiológica , Transcriptoma , Calentamiento Global , Fotosíntesis , Metabolómica
2.
J Org Chem ; 89(8): 5683-5689, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38570938

RESUMEN

A strategy for the annulation reaction of alkynones with ethyl 4,4,4-trifluoro-3-oxobutanoate through C-C bond cleavage is described. The zirconium-catalyzed transformation provides access to a wide range of structurally diverse 6-(trifluoromethyl)-2H-pyran-2-ones in moderate to good yields, utilizing Na2CO3 as a base. Further transformations into trifluoromethylated arene derivatives have been demonstrated as well. Furthermore, plausible reaction pathways are proposed by conducting various control experiments and isolating a ß-diketone intermediate (X-ray) containing an intramolecular hydrogen bond.

3.
J Org Chem ; 89(1): 589-598, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38149374

RESUMEN

A general domino annulation reaction of sulfonylmethyl isocyanide with trifluoroacetic anhydride in the presence of copper chloride as an additive is developed. The reaction affords 2,5-bis(trifluoromethyl)oxazoles in modest to good yields under mild conditions. A wide variety of sulfonylmethyl isocyanide and perfluorocarboxylic anhydride substrates are amenable to this transformation. Under a higher copper salt loading conditions, the reaction led to the formation of monotrifluoromethyl-substituted oxazole product.

4.
Polymers (Basel) ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125140

RESUMEN

The development of more recyclable materials is a key requirement for a transition towards a more circular economy. Thanks to exchange reactions, vitrimer, an attractive alternative for recyclable materials, is an innovative class of polymers that is able to change its topology without decreasing its connectivity. In this work, a bisphenol compound (VP) was prepared from saturated cardanol, i.e., 3-pentadecylphenol and vanillyl alcohol. Then, VP was epoxidized to obtain epoxide (VPGE). Finally, VPGE and citric acid (CA) were polymerized in the presence of catalyst TBD to prepare a fully bio-based vitrimer based on transesterification. The results from differential scanning calorimetry (DSC) showed that the VPGE/CA system could be crosslinked at around 163 °C. The cardanol-derived vitrimers had good network rearrangement properties. Meanwhile, because of the dynamic structural elements in the network, the material was endowed with excellent self-healing, welding, and recyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA