Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 307: 114552, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065381

RESUMEN

Practical applications of photocatalysis in algae removal often involve the use of photoreactors, which can be of many different configurations. In this study, a fluidized bed photoreactor (FBPR) with an external magnetic field was designed and constructed to achieve algae inactivation continuously and stably. Magnetic photocatalyst ZnFe2O4/Ag3PO4/g-C3N4 attached to Fe3O4 aggregate, was dispersed and fixed at the bottom of the reactor to form a flower-like structure, which can not only increase the effective irradiation area of the photocatalyst, but also enhances mass transfer by inducing flow disturbance. Under the optimal operating conditions, i.e., 0.04 m/s flow rate, 200 mT magnetic field strength, and 0.025 g photocatalyst loading, the photoreactor can effectively remove algae cells within 6 h. During the continuous operation experiment, the quality of the magnetic photocatalyst and aggregate did not decrease significantly, and there was still a 90% removal efficiency after 18 h of continuous operation. Furthermore, in the experiment where humic acid was added to simulate actual water environment, certain advantages can still be observed with the FBPR. As a continuous reactor using a magnetic photocatalyst, the FBPR has the characteristics of high availability, low cost, and low energy consumption.


Asunto(s)
Sustancias Húmicas , Campos Magnéticos , Catálisis
2.
J Environ Manage ; 281: 111884, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385902

RESUMEN

A new method for algal community restructuring is proposed, where harmful algae growth is inhibited through the addition of remedial nano-agent, while probiotic algae growth is promoted or only affected indistinctively. In this paper, the inhibiting effects of five different nanomaterials on Microcystis aeruginosa (M. aeruginosa) and Cyclotella sp. were studied, and the optimal nanomaterial was served as algae-inhibition ingredient of the remedial agent. The effects of the remedial agent on algal growth and their physiological characteristics were investigated, and the restructuring of algal community in actual water samples was explored. The results indicated that the inhibition ratio of 10 mg/L nm-Cu2O/SiO2 on M. aeruginosa and Cyclotella sp. could reach 293.1% and 82.8% respectively, acting as the best candidate for algae-inhibiting ingredient. After adding the remedial nano-agent made with nm-Cu2O/SiO2, the content of chlorophyll a, protein, and polysaccharides of M. aeruginosa decreased sharply, while the physiological characteristics of Cyclotella sp. were not significantly affected. Besides, the total biomass and proportion of cyanobacteria dropped (P < 0.05), but the Bacillariophyta biomass increased significantly (P < 0.05). The uniformity index, Shannon-Wiener index, and richness index all increased significantly (P < 0.05). Meanwhile, the quality of actual water samples has been improved evidently (P < 0.001). Therefore, the prepared remedial nano-agent in this study can control the harmful algae bloom to a certain extent by restructuring the algal community in eutrophic water bodies.


Asunto(s)
Diatomeas , Microcystis , Clorofila A , Floraciones de Algas Nocivas , Dióxido de Silicio , Agua
3.
Polymers (Basel) ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38232027

RESUMEN

The treatment and reuse of wastewater are crucial for the effective utilization and protection of global water resources. Polycyclic aromatic hydrocarbons (PAHs), as one of the most common organic pollutants in industrial wastewater, are difficult to remove due to their relatively low solubility and bioavailability in the water environment. However, biosurfactants with both hydrophilic and hydrophobic groups are effective in overcoming these difficulties. Therefore, a biosurfactant-producing strain Pseudomonas mosselii MP-6 was isolated in this study to enhance the bioavailability and biodegradation of PAHs, especially high-molecular-weight PAHs (HMW-PAHs). FTIR and LC-MS analysis showed that the MP-6 surfactant belongs to rhamnolipids, a type of biopolymer, which can reduce the water surface tension from 73.20 mN/m to 30.61 mN/m at a critical micelle concentration (CMC = 93.17 mg/L). The enhanced solubilization and biodegradation of PAHs, particularly HMW-PAHs (when MP-6 was introduced), were also demonstrated in experiments. Furthermore, comprehensive environmental stress tolerance tests were conducted to confirm the robustness of the MP-6 biosurfactant, which signifies the potential adaptability and applicability of this biosurfactant in diverse environmental remediation scenarios. The results of this study, therefore, have significant implications for future applications in the treatment of wastewater containing HMW-PAHs, such as coking wastewater.

4.
Environ Sci Pollut Res Int ; 30(27): 69711-69726, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37150789

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) with their carcinogenic, teratogenic, and mutagenic effects can cause great damage to the ecosystem and public health when present in water. With bioremediation, PAH contamination in water environment can be greatly reduced in an eco-friendly manner. It has thus become the research focus for many environmental scientists. In this study, a bibliometric analysis on three-decade (1990-2022) development of PAH bioremediation in water environment was conducted from temporal and spatial dimensions using CiteSpace. A total of 2480 publications, obtained from Web of Science core collection database, were used to explore the basic characteristics, hotspots, and prospects of the research area. The results showed that (1) bioremediation/biodegradation of PAHs in water environment has been getting researchers' attention since 1990, and is gaining even more traction as time goes on. (2) In terms of countries, China and the USA were the major contributors in this research area, while at the institutional level, the Chinese Academy of Sciences has produced the most research results. However, international cooperation across regions was lacking in the field. (3) Environment Science and Technology, Chemosphere, Applied and Environment Microbiology, Journal of Hazardous Materials, and Environment Pollution were the 5 most cited journals in this field. (4) There were three major stages the field has gone through, each with distinct research hotspots, including initial stage (1990-1994), mechanism investigation (1995-2000), and application exploration (2001-2010; 2011-2022). Finally, research perspectives were proposed, covering three directions, namely, bioavailability, immobilization, and viable but nonculturable (VBNC) bacteria.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Agua , Biodegradación Ambiental , Agua/análisis , Ecosistema , Microbiología Ambiental , Hidrocarburos Policíclicos Aromáticos/análisis , Bibliometría
5.
Bioresour Technol ; 282: 456-463, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889537

RESUMEN

The aim of this work was to study the production of bioemulsifier by Rhodococcus erythropolis OSDS1, and the improvement of crude oil depletion efficiency using a consortium of petroleum hydrocarbon degraders and OSDS1. The results showed that R. erythropolis OSDS1 produced highly stable bioemulsifier under various salinity (0-35 g/L NaCl) and pH (5.0-9.0) conditions; more than 90% of the initial emulsification activity was retained after 168 h. Emulsification capacity of the bioemulsifier on different petroleum hydrocarbons was diesel > mineral oil/crude oil > gasoline. A mixed bacterial consortium combining OSDS1 and four other petroleum hydrocarbon degraders was constructed. GC-MS results revealed that the constructed consortium achieved 85.26% depletion efficiency of crude oil in 15 days, which was significantly higher than that of individual strains. During the process, alkane hydroxylase gene (alkB) was successfully amplified from the consortium, confirming presence of crude oil degrading enzymes.


Asunto(s)
Hidrocarburos/metabolismo , Petróleo/metabolismo , Rhodococcus/metabolismo , Salinidad , Cloruro de Sodio/farmacología
6.
J Hazard Mater ; 283: 186-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25278156

RESUMEN

This paper examined the feasibility of agricultural wastes used as solid carbon sources and the effect of determined agricultural wastes on improving denitrification. Eight agricultural wastes were evaluated in MBR tests to find out their carbon release capacity, denitrification potential, leaching elements and surface properties. The results showed that retinervus luffae fructus, wheat straw, corncob and rice straw had higher carbon release capacity with COD of 13.17-21.07 mg g(-1)day(-1), BOD5 of 3.33-7.33 mg g(-1)day(-1) and respirable carbon of 8.64-10.71 mg g(-1)day(-1). Correspondingly, they displayed a good denitrification potential of 105.3-140.1mg NO3(-)-Ng(-1). Rice straw, retinervus luffae fructus and corncob were then applied in MBRs. These three agricultural wastes were found to be effective in enhancing the denitrification process, where the TN removal increased from 43.44% (control MBR) to 82.34, 68.92 and 62.97%, respectively.


Asunto(s)
Biopelículas , Reactores Biológicos , Carbono , Purificación del Agua/métodos , Agricultura , Biodegradación Ambiental , Nitratos , Nitrógeno , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA