Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257518

RESUMEN

To investigate the impact of underground water seepage and soil stress fields on the deformation of excavation and support structures, this study initially identified the key influencing factors on excavation deformation. Subsequently, through a finite element simulation analysis using Plaxis, this study explored the effects of critical factors, such as the excavation support form, groundwater lowering depth, permeability coefficient, excavation layer, and sequence on excavation deformation. Furthermore, a comprehensive consideration of various adverse factors was integrated to establish excavation support early warning thresholds, and optimal dewatering strategies. Finally, this study validated the simulation analysis through an on-site in situ testing with wireless sensors in the context of a physical construction site. The research results indicate that the internal support system within the excavation piles exhibited better stability compared to the external anchor support system, resulting in a 34.5% reduction in the overall deformation. Within the internal support system, the factors influencing the excavation deformation were ranked in the following order: water level (35.5%) > permeability coefficient (17.62%) > excavation layer (11.4%). High water levels, high permeability coefficients, and multi-layered soils were identified as the most unfavorable factors for excavation deformation. The maximum deformation under the coupled effect of these factors was established as the excavation support early warning threshold, and the optimal dewatering strategy involved lowering the water level at the excavation to 0.5 m below the excavation face. The on-site in situ monitoring data obtained through wireless sensors exhibited low discrepancies compared to the finite element simulation data, indicating the high precision of the finite element model for considering the fluid-structure interaction.

2.
Materials (Basel) ; 17(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39336393

RESUMEN

A novel cross tetrachiral honeycomb metamaterial is proposed, which not only possesses the negative Poisson's ratio property, but also has a wide-frequency bandgap. The effective elastic parameters of the cross tetrachiral honeycomb are first theoretically analyzed; then, its designable performances for negative Poisson's ratio and elastic modulus are studied by varying geometric parameters. The dynamic properties of the cross tetrachiral honeycomb metamaterial are investigated by analyzing the band structure. It is shown that without the addition of external mass to the structure, a designable wide bandgap can be generated to isolate the in-plane waves effectively by selecting the ligament angles and the radius of central cylinder. In addition, an effective approach is proposed for tuning the bandwidth without changing the geometric parameters of the structure. Compared to classical negative Poisson's ratio metamaterials, the proposed cross tetrachiral honeycomb metamaterial is designable and tunable for achieving a specific static or dynamic performance, and has potential applications in engineering practice.

3.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38138342

RESUMEN

Piezoelectric semiconductors, being materials with both piezoelectric and semiconducting properties, are of particular interest for use in multi-functional devices and naturally result in multi-physics analysis. This study provides analytical solutions for thick piezoelectric semiconductor plates with periodic boundary conditions and includes an investigation of electromechanical coupling effects. Using the linearization of the drift-diffusion equations for both electrons and holes for small carrier concentration perturbations, the governing equations are solved by the extended Stroh formalism, which is a method for solving the eigenvalues and eigenvectors of a problem. The solution, obtained in the form of a series expansion with an unknown coefficient, is solved by matching Fourier series expansions of the boundary conditions. The distributions of electromechanical fields and the concentrations of electrons and holes under four-point bending and three-point bending loads are calculated theoretically. The effects of changing the period length and steady-state carrier concentrations are covered in the discussion, which also reflects the extent of coupling in multi-physics interactions. The results provide a theoretical method for understanding and designing with piezoelectric semiconductor materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA