Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38546457

RESUMEN

A Gram-stain-negative, aerobic, motile with flagella and rod- or ovoid-shaped bacterium, designated GG15T, was isolated from tidal flat sediment sampled in Zhoushan, Zhejiang Province. Strain GG15T grew at 20-40 °C (optimum, 30 °C), at pH 5.5-9.5 (optimum, pH 7.0-8.0) and with 1.0-10.0 % (w/v) NaCl (optimum, 1.5 %). Colony diameters ranged from 1 to 3 mm within the first week, reaching a maximum of 6-7 mm after 15 days of cultivation. Strain GG15T exhibited highest 16S rRNA gene sequence similarity to Microbulbifer taiwanensis CCM 7856T (98.1 %), with similarity to other species within the genus Microbulbifer ranging from 97.8 to 93.8 %. Similarity values to other genera were below 93.8 %. Strain GG15T exhibited positive activity for ß-glucosidase, trypsin and chymotrypsin, whereas the reference strain showed negative activity. Chemotaxonomic analyses indicated that strain GG15T contained Q-8 as the sole respiratory quinone, C16 : 0 (9.1 %), iso-C15 : 0 (30.9 %) and iso-C11 : 0 3-OH (7.2 %) as the predominant fatty acids, and phosphatidylethanolamine, phosphatidylglycerol, three unidentified lipids, four unidentified glycolipids, one unidentified phospholipid, two unidentified aminolipids and two unidentified aminophospholipids as the main polar lipids. The genome of strain GG15T was 4 307 641 bp long, comprising 3861 protein-coding genes. The G+C content of strain GG15T was 61.5 mol% based on its genomic sequence. Strain GG15T showed low digital DNA-DNA hybridization (<70 %) and average nucleotide identity values (<95 %) with other Microbulbifer species. As a result, a novel species within the genus Microbulbifer, named Microbulbifer magnicolonia sp. nov., is proposed. The type strain is GG15T (MCCC 1K08802T=KCTC 8210T).


Asunto(s)
Alteromonadaceae , Ácidos Grasos , Composición de Base , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , China
2.
Curr Microbiol ; 81(6): 138, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609554

RESUMEN

A Gram-stain-negative bacterium with a rod-to-ovoid shape, named strain M216T, was isolated from sand sediment from the coastal intertidal zone of Huludao, Liaoning Province, China. Growth was observed at 8-40 °C (optimal, 30 °C), pH 5.5-9.5 (optimal, pH 6.5) and 0.5-14.0% (w/v) NaCl (optimal, 6%). Strain M216T possessed ubiquinone-9 as its sole respiratory quinone and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified aminophospholipid, two unidentified phosphoglycolipids, three unidentified phospholipids and three unidentified glycolipids as the main polar lipids. C12:0, C16:0, C12:0 3-OH, C16:1 ω9c, C18:1 ω9c and summed features 3 (C16:1 ω7c and/or C16:1 ω6c) were the major fatty acids (> 5%). The 16S rRNA gene sequence of strain M216T exhibited high similarity to those of 'Marinobacter arenosus' CAU 1620T and Marinobacter adhaerens HP15T (99.3% and 98.5%, respectively) and less than 98.5% similarity to those of the other type strains. The ANI and dDDH values between the strain M216T and 'Marinobacter arenosus' CAU 1620T were 87.4% and 33.3%, respectively; these values were the highest among the other type strains but lower than the species threshold. The G+C content of strain M216T was 58.3%. Genomic analysis revealed that strain M216T harbors the major CAZymes of GH13, GH23, GH73, and PL5, which are responsible for polysaccharide degradation and the potential ability to reduce nitrate to ammonia. Through phenotypic, genotypic, and chemotaxonomic analyses, we proposed the name Marinobacter albus sp. nov., a novel species in the genus Marinobacter, with its type strain M216T (= MCCC 1K08600T = KCTC 82894T).


Asunto(s)
Marinobacter , Marinobacter/genética , ARN Ribosómico 16S/genética , Arena , Amoníaco , China
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431687

RESUMEN

Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2- cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.


Asunto(s)
Colitis/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Mucina 2/genética , Animales , Colitis/patología , Colitis/prevención & control , Colitis/terapia , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Potenciales de la Membrana/genética , Ratones , Técnicas de Placa-Clamp
4.
Proc Natl Acad Sci U S A ; 117(2): 1021-1026, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879339

RESUMEN

The tremorgenic fungal alkaloid paxilline (PAX) is a commonly used specific inhibitor of the large-conductance, voltage- and Ca2+-dependent BK-type K+ channel. PAX inhibits BK channels by selective interaction with closed states. BK inhibition by PAX is best characterized by the idea that PAX gains access to the channel through the central cavity of the BK channel, and that only a single PAX molecule can interact with the BK channel at a time. The notion that PAX reaches its binding site via the central cavity and involves only a single PAX molecule would be consistent with binding on the axis of the permeation pathway, similar to classical open channel block and inconsistent with the observation that PAX selectively inhibits closed channels. To explore the potential sites of interaction of PAX with the BK channel, we undertook a computational analysis of the interaction of PAX with the BK channel pore gate domain guided by recently available liganded (open) and metal-free (closed) Aplysia BK channel structures. The analysis unambiguously identified a preferred position of PAX occupancy that accounts for all previously described features of PAX inhibition, including state dependence, G311 sensitivity, stoichiometry, and central cavity accessibility. This PAX-binding pose in closed BK channels is supported by additional functional results.


Asunto(s)
Indoles/antagonistas & inhibidores , Indoles/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Animales , Sitios de Unión , Activación del Canal Iónico/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Conformación Proteica , Dominios Proteicos
5.
Proc Natl Acad Sci U S A ; 116(37): 18397-18403, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451634

RESUMEN

The perception of sound relies on sensory hair cells in the cochlea that convert the mechanical energy of sound into release of glutamate onto postsynaptic auditory nerve fibers. The hair cell receptor potential regulates the strength of synaptic transmission and is shaped by a variety of voltage-dependent conductances. Among these conductances, the Ca2+- and voltage-activated large conductance Ca2+-activated K+ channel (BK) current is prominent, and in mammalian inner hair cells (IHCs) displays unusual properties. First, BK currents activate at unprecedentedly negative membrane potentials (-60 mV) even in the absence of intracellular Ca2+ elevations. Second, BK channels are positioned in clusters away from the voltage-dependent Ca2+ channels that mediate glutamate release from IHCs. Here, we test the contributions of two recently identified leucine-rich-repeat-containing (LRRC) regulatory γ subunits, LRRC26 and LRRC52, to BK channel function and localization in mouse IHCs. Whereas BK currents and channel localization were unaltered in IHCs from Lrrc26 knockout (KO) mice, BK current activation was shifted more than +200 mV in IHCs from Lrrc52 KO mice. Furthermore, the absence of LRRC52 disrupted BK channel localization in the IHCs. Given that heterologous coexpression of LRRC52 with BK α subunits shifts BK current gating about -90 mV, to account for the profound change in BK activation range caused by removal of LRRC52, we suggest that additional factors may help define the IHC BK gating range. LRRC52, through stabilization of a macromolecular complex, may help retain some other components essential both for activation of BK currents at negative membrane potentials and for appropriate BK channel positioning.


Asunto(s)
Células Ciliadas Auditivas Internas/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/farmacología , Animales , Calcio/metabolismo , Femenino , Activación del Canal Iónico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transmisión Sináptica/fisiología , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 115(40): 9923-9928, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224470

RESUMEN

Structural symmetry is a hallmark of homomeric ion channels. Nonobligatory regulatory proteins can also critically define the precise functional role of such channels. For instance, the pore-forming subunit of the large conductance voltage and calcium-activated potassium (BK, Slo1, or KCa1.1) channels encoded by a single KCa1.1 gene assembles in a fourfold symmetric fashion. Functional diversity arises from two families of regulatory subunits, ß and γ, which help define the range of voltages over which BK channels in a given cell are activated, thereby defining physiological roles. A BK channel can contain zero to four ß subunits per channel, with each ß subunit incrementally influencing channel gating behavior, consistent with symmetry expectations. In contrast, a γ1 subunit (or single type of γ1 subunit complex) produces a functionally all-or-none effect, but the underlying stoichiometry of γ1 assembly and function remains unknown. Here we utilize two distinct and independent methods, a Forster resonance energy transfer-based optical approach and a functional reporter in single-channel recordings, to reveal that a BK channel can contain up to four γ1 subunits, but a single γ1 subunit suffices to induce the full gating shift. This requires that the asymmetric association of a single regulatory protein can act in a highly concerted fashion to allosterically influence conformational equilibria in an otherwise symmetric K+ channel.


Asunto(s)
Activación del Canal Iónico/fisiología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades de Proteína/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia/métodos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Ratones , Subunidades de Proteína/genética , Xenopus laevis
7.
Proc Natl Acad Sci U S A ; 114(18): E3739-E3747, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416688

RESUMEN

Leucine-rich-repeat-containing protein 26 (LRRC26) is the regulatory γ1 subunit of Ca2+- and voltage-dependent BK-type K+ channels. BK channels that contain LRRC26 subunits are active near normal resting potentials even without Ca2+, suggesting they play unique physiological roles, likely limited to very specific cell types and cellular functions. By using Lrrc26 KO mice with a ß-gal reporter, Lrrc26 promoter activity is found in secretory epithelial cells, especially acinar epithelial cells in lacrimal and salivary glands, and also goblet and Paneth cells in intestine and colon, although absent from neurons. We establish the presence of LRRC26 protein in eight secretory tissues or tissues with significant secretory epithelium and show that LRRC26 protein coassembles with the pore-forming BK α-subunit in at least three tissues: lacrimal gland, parotid gland, and colon. In lacrimal, parotid, and submandibular gland acinar cells, LRRC26 KO shifts BK gating to be like α-subunit-only BK channels. Finally, LRRC26 KO mimics the effect of SLO1/BK KO in reducing [K+] in saliva. LRRC26-containing BK channels are competent to contribute to resting K+ efflux at normal cell membrane potentials with resting cytosolic Ca2+ concentrations and likely play a critical physiological role in supporting normal secretory function in all secretory epithelial cells.


Asunto(s)
Colon/metabolismo , Células Epiteliales/metabolismo , Aparato Lagrimal/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potenciales de la Membrana , Glándula Parótida/metabolismo , Animales , Calcio/metabolismo , Colon/citología , Células Epiteliales/citología , Aparato Lagrimal/citología , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Noqueados , Glándula Parótida/citología , Potasio/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(16): 5237-42, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848005

RESUMEN

To probe structure and gating-associated conformational changes in BK-type potassium (BK) channels, we examined consequences of Cd(2+) coordination with cysteines introduced at two positions in the BK inner pore. At V319C, the equivalent of valine in the conserved Kv proline-valine-proline (PVP) motif, Cd(2+) forms intrasubunit coordination with a native glutamate E321, which would place the side chains of V319C and E321 much closer together than observed in voltage-dependent K(+) (Kv) channel structures, requiring that the proline between V319C and E321 introduces a kink in the BK S6 inner helix sharper than that observed in Kv channel structures. At inner pore position A316C, Cd(2+) binds with modest state dependence, suggesting the absence of an ion permeation gate at the cytosolic side of BK channel. These results highlight fundamental structural differences between BK and Kv channels in their inner pore region, which likely underlie differences in voltage-dependent gating between these channels.


Asunto(s)
Cadmio/farmacología , Cisteína/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Ácido Glutámico/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Xenopus
9.
Proc Natl Acad Sci U S A ; 112(8): 2599-604, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675513

RESUMEN

Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca(2+) and K(+), leading to an elevation in cytosolic Ca(2+) critical for activation of hyperactivated swimming motility. In mice, the Ca(2+) conductance (alkalization-activated Ca(2+)-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K(+) conductance (sperm pH-regulated K(+) current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca(2+) and K(+) conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions.


Asunto(s)
Canales de Calcio/metabolismo , Fertilidad , Activación del Canal Iónico , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Subunidades de Proteína/metabolismo , Espermatozoides/metabolismo , Potenciales de Acción , Álcalis , Animales , Epidídimo/fisiología , Eliminación de Gen , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Ratones Noqueados
10.
Proc Natl Acad Sci U S A ; 111(13): 4868-73, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639523

RESUMEN

Many K(+) channels are oligomeric complexes with intrinsic structural symmetry arising from the homo-tetrameric core of their pore-forming subunits. Allosteric regulation of tetramerically symmetric proteins, whether by intrinsic sensing domains or associated auxiliary subunits, often mirrors the fourfold structural symmetry. Here, through patch-clamp recordings of channel population ensembles and also single channels, we examine regulation of the Ca(2+)- and voltage-activated large conductance Ca(2+)-activated K(+) (BK) channel by associated γ1-subunits. Through expression of differing ratios of γ1:α-subunits, the results reveal an all-or-none functional regulation of BK channels by γ-subunits: channels either exhibit a full gating shift or no shift at all. Furthermore, the γ1-induced shift exhibits a state-dependent labile behavior that recapitulates the fully shifted or unshifted behavior. The γ1-induced shift contrasts markedly to the incremental shifts in BK gating produced by 1-4 ß-subunits and adds a new layer of complexity to the mechanisms by which BK channel functional diversity is generated.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Subunidades de Proteína/metabolismo , Regulación Alostérica , Animales , Humanos , Activación del Canal Iónico , Ratones , Modelos Biológicos , Factores de Tiempo , Xenopus laevis
11.
Anesthesiology ; 124(5): 1065-76, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26845140

RESUMEN

BACKGROUND: Anesthetic preconditioning (APC) is a clinically important phenomenon in which volatile anesthetics (VAs) protect tissues such as heart against ischemic injury. The mechanism of APC is thought to involve K channels encoded by the Slo gene family, and the authors showed previously that slo-2 is required for APC in Caenorhabditis elegans. Thus, the authors hypothesized that a slo-2 ortholog may mediate APC-induced cardioprotection in mammals. METHODS: A perfused heart model of ischemia-reperfusion injury, a fluorescent assay for K flux, and mice lacking Slo2.1 (Slick), Slo2.2 (Slack), or both (double knockouts, Slo2.x dKO) were used to test whether these channels are required for APC-induced cardioprotection and for cardiomyocyte or mitochondrial K transport. RESULTS: In wild-type (WT) hearts, APC improved post-ischemia-reperfusion functional recovery (APC = 39.5 ± 3.7% of preischemic rate × pressure product vs. 20.3 ± 2.3% in controls, means ± SEM, P = 0.00051, unpaired two-tailed t test, n = 8) and lowered infarct size (APC = 29.0 ± 4.8% of LV area vs. 51.4 ± 4.5% in controls, P = 0.0043, n = 8). Protection by APC was absent in hearts from Slo2.1 mice (% recovery APC = 14.6 ± 2.6% vs. 16.5 ± 2.1% in controls, P = 0.569, n = 8 to 9, infarct APC = 52.2 ± 5.4% vs. 53.5 ± 4.7% in controls, P = 0.865, n = 8 to 9). APC protection was also absent in Slo2.x dKO hearts (% recovery APC = 11.0 ± 1.7% vs. 11.9 ± 2.2% in controls, P = 0.725, n = 8, infarct APC = 51.6 ± 4.4% vs. 50.5 ± 3.9% in controls, P = 0.855, n = 8). Meanwhile, Slo2.2 hearts responded similar to WT (% recovery APC = 41.9 ± 4.0% vs. 18.0 ± 2.5% in controls, P = 0.00016, n = 8, infarct APC = 25.2 ± 1.3% vs. 50.8 ± 3.3% in controls, P < 0.000005, n = 8). Furthermore, VA-stimulated K transport seen in cardiomyocytes or mitochondria from WT or Slo2.2 mice was absent in Slo2.1 or Slo2.x dKO. CONCLUSION: Slick (Slo2.1) is required for both VA-stimulated K flux and for the APC-induced cardioprotection.


Asunto(s)
Anestésicos por Inhalación/uso terapéutico , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Canales de Potasio/genética , Canales de Potasio/metabolismo , Potasio/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Células HEK293 , Humanos , Isoflurano/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canales de potasio activados por Sodio , Talio/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(29): 12161-6, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730134

RESUMEN

BK channels are regulated by two distinct physiological signals, transmembrane potential and intracellular Ca(2+), each acting through independent modular sensor domains. However, despite a presumably central role in the coupling of sensor activation to channel gating, the pore-lining S6 transmembrane segment has not been systematically studied. Here, cysteine substitution and modification studies of the BK S6 point to substantial differences between BK and Kv channels in the structure and function of the S6-lined inner pore. Gating shifts caused by introduction of cysteines define a pattern and direction of free energy changes in BK S6 distinct from Shaker. Modification of BK S6 residues identifies pore-facing residues that occur at different linear positions along aligned BK and Kv S6 segments. Periodicity analysis suggests that one factor contributing to these differences may be a disruption of the BK S6 α-helix from the unique diglycine motif at the position of the Kv hinge glycine. State-dependent MTS accessibility reveals that, even in closed states, modification can occur. Furthermore, the inner pore of BK channels is much larger than that of K(+) channels with solved crystal structures. The results suggest caution in the use of Kv channel structures as templates for BK homology models, at least in the pore-gate domain.


Asunto(s)
Cisteína/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Modelos Moleculares , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Animales , Electrofisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Datos de Secuencia Molecular , Mutagénesis , Oocitos , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología , Xenopus
13.
Proc Natl Acad Sci U S A ; 108(48): 19419-24, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22084117

RESUMEN

KSper, a pH-dependent K(+) current in mouse spermatozoa that is critical for fertility, is activated by alkalization in the range of pH 6.4-7.2 at membrane potentials between -50 and 0 mV. Although the KSper pore-forming subunit is encoded by the Slo3 gene, heterologously expressed Slo3 channels are largely closed at potentials negative to 0 mV at physiological pH. Here we identify a Slo3-associating protein, LRRC52 (leucine-rich repeat-containing 52), that shifts Slo3 gating into a range of voltages and pH values similar to that producing KSper current activation. Message for LRRC52, a homolog of the Slo1-modifying LRRC26 protein, is enriched in testis relative to other homologous LRRC subunits and is developmentally regulated in concert with that for Slo3. LRRC52 protein is detected only in testis. It is markedly diminished from Slo3(-/-) testis and completely absent from Slo3(-/-) sperm, indicating that LRRC52 expression is critically dependent on the presence of Slo3. We also examined the ability of other LRRC subunits homologous to LRRC26 and LRRC52 to modify Slo3 currents. Although both LRRC26 and LRRC52 are able to modify Slo3 function, LRRC52 is the stronger modifier of Slo3 function. Effects of other related subunits were weaker or absent. We propose that LRRC52 is a testis-enriched Slo3 auxiliary subunit that helps define the specific alkalization dependence of KSper activation. Together, LRRC52 and LRRC26 define a new family of auxiliary subunits capable of critically modifying the gating behavior of Slo family channels.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Biotinilación , Western Blotting , Electrofisiología , Inmunoprecipitación , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratones , Ratones Noqueados , Potasio/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Proc Natl Acad Sci U S A ; 108(14): 5879-84, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21427226

RESUMEN

Mouse spermatozoa express a pH-dependent K(+) current (KSper) thought to be composed of subunits encoded by the Slo3 gene. However, the equivalence of KSper and Slo3-dependent current remains uncertain, because heterologous expression of Slo3 results in currents that are less effectively activated by alkalization than are native KSper currents. Here, we show that genetic deletion of Slo3 abolishes all pH-dependent K(+) current at physiological membrane potentials in corpus epididymal sperm. A residual pH-dependent outward current (I(Kres)) is observed in Slo3(-/-) sperm at potentials of >0 mV. Differential inhibition of KSper/Slo3 and I(Kres) by clofilium reveals that the amplitude of I(Kres) is similar in both wild-type (wt) and Slo3(-/-) sperm. The properties of I(Kres) suggest that it likely represents outward monovalent cation flux through CatSper channels. Thus, KSper/Slo3 may account for essentially all mouse sperm K(+) current and is the sole pH-dependent K(+) conductance in these sperm. With physiological ionic gradients, alkalization depolarizes Slo3(-/-) spermatozoa, presumably from CatSper activation, in contrast to Slo3/KSper-mediated hyperpolarization in wt sperm. Slo3(-/-) male mice are infertile, but Slo3(-/-) sperm exhibit some fertility within in vitro fertilization assays. Slo3(-/-) sperm exhibit a higher incidence of morphological abnormalities accentuated by hypotonic challenge and also exhibit deficits in motility in the absence of bicarbonate, revealing a role of KSper under unstimulated conditions. Together, these results show that KSper/Slo3 is the primary spermatozoan K(+) current, that KSper may play a critical role in acquisition of normal morphology and sperm motility when faced with hyperosmotic challenges, and that Slo3 is critical for fertility.


Asunto(s)
Canales de Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio/metabolismo , Espermatozoides/metabolismo , Animales , Western Blotting , Canales de Calcio/genética , Electrofisiología , Componentes del Gen , Eliminación de Gen , Inmunoprecipitación , Canales de Potasio de Gran Conductancia Activados por el Calcio/deficiencia , Masculino , Ratones , Ratones Noqueados , Bloqueadores de los Canales de Potasio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Grabación en Video
15.
Pestic Biochem Physiol ; 105(1): 62-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24238292

RESUMEN

The inhibitory effects of esterified lactoferrin (ELF) and lactoferrin (LF) against tobacco mosaic virus (TMV) in tobacco seedlings and the underlying mechanism were investigated. ELF and LF significantly inhibited viral infection and TMV multiplication in tobacco plants. ELF showed a higher inhibition effect against TMV than LF treatment in a dose and time-dependent way. Moreover, ELF induced a higher increase in the levels of transcription of pathogenesis-related (PR) protein genes [acidic PRs (PR-1a, PR-2, PR-3, PR-5) and basic PR-1] and defense-related enzymes [phenylalanine ammonia lyase (PAL, EC 4.3.1.5), and 5-epi-aristolochene synthase (EAS, EC 2.5.1.35)] both locally and systemically, in correlation with the induction of resistance against tobacco mosaic virus. Furthermore, ELF also induced accumulation of salicylic acid, SA 2-O-ß-D-glucoside and H2O2. These results suggested that ELF and LF could control TMV incidence and the mechanism might attribute to activate the expression of a number of defense genes.


Asunto(s)
Lactoferrina/farmacología , Nicotiana/virología , Enfermedades de las Plantas/virología , Virus del Mosaico del Tabaco/efectos de los fármacos , Esterificación , Lactoferrina/química , Enfermedades de las Plantas/prevención & control , Plantones/crecimiento & desarrollo , Plantones/virología , Nicotiana/crecimiento & desarrollo , Virus del Mosaico del Tabaco/fisiología
16.
J Neurosci ; 30(49): 16651-61, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21148004

RESUMEN

The BK channel is a Ca²+- and voltage-gated potassium channel with many important physiological functions. To identify proteins important to its function in vivo, we screened for Caenorhabditis elegans mutants that suppressed a lethargic phenotype caused by expressing a gain-of-function (gf) isoform of the BK channel α-subunit SLO-1. BKIP-1 (for BK channel interacting protein), a small peptide with no significant homology to any previously characterized molecules, was thus identified. BKIP-1 and SLO-1 showed similar expression and subcellular localization patterns and appeared to interact physically through discrete domains. bkip-1 loss-of-function (lf) mutants phenocopied slo-1(lf) mutants in behavior and synaptic transmission and suppressed the lethargy, egg-laying defect, and deficient neurotransmitter release caused by SLO-1(gf). In heterologous expression systems, BKIP-1 decreased the activation rate and shifted the conductance-voltage relationship of SLO-1 in a Ca²+-dependent manner and increased SLO-1 surface expression. Thus, BKIP-1 is a novel auxiliary subunit critical to SLO-1 function in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Subunidades de Proteína/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Conducta Animal , Biotinilación/métodos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Potenciales Postsinápticos Excitadores/genética , Humanos , Inmunoprecipitación/métodos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Locomoción/genética , Proteínas Luminiscentes/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Neuronas/fisiología , Oocitos , Técnicas de Placa-Clamp/métodos , Subunidades de Proteína/genética , Conducta Reproductiva/fisiología , Transmisión Sináptica/genética , Xenopus
17.
J Gen Physiol ; 153(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33651884

RESUMEN

Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.


Asunto(s)
Células Cromafines , Sodio , Animales , Factores de Crecimiento de Fibroblastos/genética , Ratones , Canal de Sodio Activado por Voltaje NAV1.3 , Ratas , Bloqueadores de los Canales de Sodio , Tetrodotoxina/farmacología
18.
Sci Rep ; 9(1): 2573, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796290

RESUMEN

Potassium (K+) channels shape the response properties of neurons. Although enormous progress has been made to characterize K+ channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in situ hybridization, we localized expression of transcripts encoding the sodium-activated potassium channels KNa1.1 (SLO2.2/Slack) and KNa1.2 (SLO2.1/Slick) to the primary auditory neurons (spiral ganglion neurons, SGNs). To examine the contribution of these channels to function of the SGNs in vivo, we measured auditory brainstem responses in KNa1.1/1.2 double knockout (DKO) mice. Although auditory brainstem response (wave I) thresholds were not altered, the amplitudes of suprathreshold responses were reduced in DKO mice. This reduction in amplitude occurred despite normal numbers and molecular architecture of the SGNs and their synapses with the inner hair cells. Patch clamp electrophysiology of SGNs isolated from DKO mice displayed altered membrane properties, including reduced action potential thresholds and amplitudes. These findings show that KNa1 channel activity is essential for normal cochlear function and suggest that early forms of hearing loss may result from physiological changes in the activity of the primary auditory neurons.


Asunto(s)
Corteza Auditiva/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de potasio activados por Sodio/metabolismo , Animales , Corteza Auditiva/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Canales de potasio activados por Sodio/genética
19.
J Neurosci ; 27(17): 4707-15, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17460083

RESUMEN

Large-conductance, Ca2+- and voltage-activated K+ (BK) channels are broadly expressed proteins that respond to both cellular depolarization and elevations in cytosolic Ca2+. The characteristic functional properties of BK channels among different cells are determined, in part, by tissue-specific expression of auxiliary beta subunits. One important functional property conferred on BK channels by beta subunits is inactivation. Yet, the physiological role of BK channel inactivation remains poorly understood. Here we report that as a consequence of a specific mechanism of inactivation, BK channels containing the beta3a auxiliary subunit exhibit an anomalous slowing of channel closing. This produces a net repolarizing current flux that markedly exceeds that expected if all open channels had simply closed. Because of the time dependence of inactivation, this behavior results in a Ca2+-independent but time-dependent increase in a slow tail current, providing an unexpected mechanism by which use-dependent changes in slow afterhyperpolarizations might regulate electrical firing. The physiological significance of inactivation in BK channels mediated by different beta subunits may therefore arise not from inactivation itself, but from the differences in the amplitude and duration of repolarizing currents arising from the beta-subunit-specific energetics of recovery from inactivation.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Calcio/metabolismo , Humanos , Potenciales de la Membrana/fisiología , Modelos Químicos , Potasio/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/fisiología
20.
Elife ; 72018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29963986

RESUMEN

Mammalian BK-type voltage- and Ca2+-dependent K+ channels are found in a wide range of cells and intracellular organelles. Among different loci, the composition of the extracellular microenvironment, including pH, may differ substantially. For example, it has been reported that BK channels are expressed in lysosomes with their extracellular side facing the strongly acidified lysosomal lumen (pH ~4.5). Here we show that BK activation is strongly and reversibly inhibited by extracellular H+, with its conductance-voltage relationship shifted by more than +100 mV at pHO 4. Our results reveal that this inhibition is mainly caused by H+ inhibition of BK voltage-sensor (VSD) activation through three acidic residues on the extracellular side of BK VSD. Given that these key residues (D133, D147, D153) are highly conserved among members in the voltage-dependent cation channel superfamily, the mechanism underlying BK inhibition by extracellular acidification might also be applicable to other members in the family.


Asunto(s)
Ácido Aspártico/química , Calcio/metabolismo , Membranas Intracelulares/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Secuencia de Aminoácidos , Animales , Ácido Aspártico/metabolismo , Sitios de Unión , Citosol/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Lisosomas/química , Lisosomas/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Modelos Moleculares , Oocitos/citología , Oocitos/fisiología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA