Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 324: 116300, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174467

RESUMEN

Microbially induced carbonate precipitation (MICP) technology is difficult to be used for phosphogypsum (PG) treatment because the pH of PG is too low to be suitable for the growth of some bacteria. When acidophilus bacteria are used to treat PG, their low mineralization rate leads to low removal of the impurities. Based on the above problems, this study reports a new method that uses enzyme induced carbonate precipitation (EICP) modified acidophilus bacteria solution to remove phosphorus (P) and fluorine (F) in PG. Five kinds of mixtures of MICP and EICP (ME) were used to leach the PG column, and its mechanism was discussed. The results show that when the ratio of MICP to EICP is 2:1, the removal ratio of P and F is the highest, which reaches 72.87-74.92%. Compared with the single traditional bacillus solution or single acidophilic bacteria solution, the impurity removal ratio of the ME21 (MICP:EICP=2:1) mixture is increased by about 13%. The good acid resistance of the urease enzyme and acidophilic bacteria improves their growth and activity, thus increasing the biomineralization rate by about 22%. Additionally, the ME treatment is 30% cheaper than the traditional binder treatment. Therefore, this new treatment is a low-cost and environmentally friendly method.


Asunto(s)
Carbonato de Calcio , Flúor , Fósforo , Carbonatos , Bacterias , Fluoruros , Precipitación Química
2.
Environ Technol ; 42(7): 1071-1083, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31454300

RESUMEN

Mechanical properties of fiber-reinforced soil after soaking in heavy metal ion solution have great influences on safety and stability of the reinforcement, herein the mechanical properties of optimum moisture content of different concentrations of zinc ions contaminated soil were studied through shear test, compression test and triaxial test. The compressive modulus, compression coefficient and porosity ratio of different concentrations of the zinc-ion contaminated soil under different pressure were studied, and the variation characteristics of internal friction angle and cohesion were also investigated, thereafter, the causes of the change of cohesion and internal friction angle were analyzed from the microscopic perspective. The results show that the shear strength of contaminated reinforced soil increases with the increase of confining pressure at the same zinc ions concentration. And at the same confining pressure, with the increase of zinc ions concentration, the shear strength of contaminated reinforced soil first increases and then decreases. With the increase of zinc ions concentration, the internal friction angle and compression coefficient increase, the cohesion and the modulus of compression decrease. With the increase of normal stress, the compression coefficient decreases firstly and then increases, and the compression modulus increases and then decreases. With the concentration of zinc ions increases at lower normal stress, the amount of shrinkage increases and the compression coefficient decreases. While at higher normal stress, the compressive modulus decreases and the compression coefficient increases.


Asunto(s)
Lino , Zinc , Arcilla , Iones , Suelo
3.
Sci Rep ; 10(1): 11296, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647348

RESUMEN

With the application of fiber-reinforcement technology, the mechanical properties of silty clay are improved with fiber reinforcement. However, the variation of permeability coefficient and other parameters of flax-fiber reinforced silty clay have not been sufficiently studied. In this study, the permeability of flax-fiber reinforced silty clay soaked with zinc-contaminated solution under different osmotic pressure was tested by a flexible-wall permeameter, and the effects of zinc-ion concentration and confining pressure on the permeability of flax-fiber reinforced silty clay were studied. Genius XRF was employed to detect the types and quantity of metal elements in the specimens, thereafter, the reasons for the change of permeability were explained from chemical and microscopic perspective. The results showed that the permeability coefficient of flax-fiber reinforced silty clay decreased significantly with the increase of zinc-ion concentration in a low concentration (about 1-10 mg L-1). While in a high concentration (about 100 mg L-1), the permeability coefficient of flax-fiber reinforced silty clay changed little with the increase of zinc-ion concentration. While the flax-fiber reinforced silty clay was not soaked with zinc-ion solution, the permeability coefficient of the specimen increased with the increase of confining pressure. However, when the flax-fiber reinforced silty clay was soaked with zinc-contaminated solution, the permeability coefficient first decreased and then tended to be constant with the increase of confining pressure. With the increase of confining pressure, the porosity of flax-fiber reinforced silty clay decreased, and with the increase of zinc-ion concentration, the porosity of flax-fiber reinforced silty clay first increased and then decreased.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA