Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Neuroimage ; 284: 120463, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37989457

RESUMEN

How to retrieve latent neurobehavioural processes from complex neurobiological signals is an important yet unresolved challenge. Here, we develop a novel approach, orthogonal-Decoding multi-Cognitive Processes (DeCoP), to reveal underlying latent neurobehavioural processing and show that its performance is superior to traditional non-orthogonal decoding in terms of both false inference and robustness. Processing value and salience information are two fundamental but mutually confounded pathways of reward reinforcement essential for decision making. During reward/punishment anticipation, we applied DeCoP to decode brain-wide responses into spatially overlapping, yet functionally independent, evaluation and readiness processes, which are modulated differentially by meso­limbic vs nigro-striatal dopamine systems. Using DeCoP, we further demonstrated that most brain regions only encoded abstract information but not the exact input, except for dorsal anterior cingulate cortex and insula. Furthermore, we anticipate our novel analytical principle to be applied generally in decoding multiple latent neurobehavioral processes and thus advance both the design and hypothesis testing for cognitive tasks.


Asunto(s)
Encéfalo , Recompensa , Humanos , Encéfalo/fisiología , Refuerzo en Psicología , Mapeo Encefálico , Dopamina/fisiología , Imagen por Resonancia Magnética
2.
Neuroimage ; 269: 119928, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740028

RESUMEN

BACKGROUND: The cerebellum is recognized as being involved in neurocognitive and motor functions with communication with extra-cerebellar regions relying on the white matter integrity of the cerebellar peduncles. However, the genetic determinants of cerebellar white matter integrity remain largely unknown. METHODS: We conducted a genome-wide association analysis of cerebellar white matter microstructure using diffusion tensor imaging data from 25,415 individuals from UK Biobank. The integrity of cerebellar white matter microstructure was measured as fractional anisotropy (FA) and mean diffusivity (MD). Identification of independent genomic loci, functional annotation, and tissue and cell-type analysis were conducted with FUMA. The linkage disequilibrium score regression (LDSC) was used to calculate genetic correlations between cerebellar white matter microstructure and regional brain volumes and brain-related traits. Furthermore, the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework was employed to identify the shared genetic basis between cerebellar white matter microstructure and common brain disorders. RESULTS: We identified 11 genetic loci (P < 8.3 × 10-9) and 86 genes associated with cerebellar white matter microstructure. Further functional enrichment analysis implicated the involvement of GABAergic neurons and cholinergic pathways. Significant polygenetic overlap between cerebellar white matter tracts and their anatomically connected or adjacent brain regions was detected. In addition, we report the overall genetic correlation and specific loci shared between cerebellar white matter microstructural integrity and brain-related traits, including movement, cognitive, psychiatric, and cerebrovascular categories. CONCLUSIONS: Collectively, this study represents a step forward in understanding the genetics of cerebellar white matter microstructure and its shared genetic etiology with common brain disorders.


Asunto(s)
Encefalopatías , Sustancia Blanca , Humanos , Imagen de Difusión Tensora , Estudio de Asociación del Genoma Completo , Encéfalo , Anisotropía
3.
Opt Lett ; 48(17): 4554-4557, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656553

RESUMEN

This Letter demonstrates a novel, to the best of knowledge, overlapping single-sideband (OSSB) transmission scheme for spectrally efficient multi-service fiber-wireless (FiWi) access in a low-cost direct-detection (DD) THz system. Utilizing the proposed OSSB scheme, user data from different services can share the same spectrum resource yet can be successfully demodulated via one cost-effective DD THz receiver in conjunction with the Kramers-Kronig (KK) based SSB field reconstruction and look-up table (LUT) enabled signal separation algorithms. A proof-of-principle experiment is conducted. Based on an IQ modulator and a single THz zero-bias diode (ZBD), two independent 10-GBd quadrature phase shift keying (QPSK) signals with an overlapped spectrum are successfully demodulated after 20-km fiber and up to 3-m wireless transmission at the 300-GHz band. To the best of our knowledge, this is the first demonstration of multi-service FiWi access with an OSSB format in a 300-GHz DD THz system.

4.
Opt Lett ; 48(4): 928-931, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790977

RESUMEN

This Letter demonstrates a real-time 100-GbE fiber-wireless seamless integration system operating at the whole W band (75-110 GHz). Based on a pair of commercial digital coherent optical modules, the real-time transparent transmission of 125-Gb/s dual-polarized quadrature phase-shift keying signal has been successfully achieved over two-spans of 20-km fiber and up to 150-m electromagnetic dual-polarized single-input single-output wireless link. To the best of our knowledge, this is the first real-time demonstration of 100-GbE signal transmission over >100-m wireless distance at the millimeter-wave band based on photonics. We believed this real-time and high-speed fiber-wireless seamless integration system with a wireless coverage up to hundreds of meters can significantly accelerate the progress of upcoming 6G.

5.
Neuroimage ; 255: 119166, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398282

RESUMEN

Magnetic Resonance Imaging (MRI) technology has been increasingly used in neuroscience studies. Reproducibility of statistically significant findings generated by MRI-based studies, especially association studies (phenotype vs. MRI metric) and task-induced brain activation, has been recently heavily debated. However, most currently available reproducibility measures depend on thresholds for the test statistics and cannot be use to evaluate overall study reproducibility. It is also crucial to elucidate the relationship between overall study reproducibility and sample size in an experimental design. In this study, we proposed a model-based reproducibility index to quantify reproducibility which could be used in large-scale high-throughput MRI-based studies including both association studies and task-induced brain activation. We performed the model-based reproducibility assessments for a few association studies and task-induced brain activation by using several recent large sMRI/fMRI databases. For large sample size association studies between brain structure/function features and some basic physiological phenotypes (i.e. Sex, BMI), we demonstrated that the model-based reproducibility of these studies is more than 0.99. For MID task activation, similar results could be observed. Furthermore, we proposed a model-based analytical tool to evaluate minimal sample size for the purpose of achieving a desirable model-based reproducibility. Additionally, we evaluated the model-based reproducibility of gray matter volume (GMV) changes for UK Biobank (UKB) vs. Parkinson Progression Marker Initiative (PPMI) and UK Biobank (UKB) vs. Human Connectome Project (HCP). We demonstrated that both sample size and study-specific experimental factors play important roles in the model-based reproducibility assessments for different experiments. In summary, a systematic assessment of reproducibility is fundamental and important in the current large-scale high-throughput MRI-based studies.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Sustancia Gris , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
6.
BMC Med ; 20(1): 424, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329481

RESUMEN

BACKGROUND: Gestational age (GA) is associated with later cognition and behavior. However, it is unclear how specific cognitive domains and brain structural development varies with the stepwise change of gestational duration. METHODS: This large-scale longitudinal cohort study analyzed 11,878 early adolescents' brain volume maps at 9-10 years (baseline) and 5685 at 11-12 years (a 2-year follow-up) from the Adolescent Brain Cognitive Development (ABCD) study. According to gestational age, adolescents were divided into five categorical groups: ≤ 33 weeks, 34-35 weeks, 36 weeks, 37-39 weeks, and ≥ 40 weeks. The NIH Toolbox was used to estimate neurocognitive performance, including crystallized and fluid intelligence, which was measured for 11,878 adolescents at baseline with crystallized intelligence and relevant subscales obtained at 2-year follow-up (with participant numbers ranging from 6185 to 6310 depending on the cognitive domain). An additional large population-based cohort of 618,070 middle adolescents at ninth-grade (15-16 years) from the Danish national register was utilized to validate the association between gestational age and academic achievements. A linear mixed model was used to examine the group differences between gestational age and neurocognitive performance, school achievements, and grey matter volume. A mediation analysis was performed to examine whether brain structural volumes mediated the association between GA and neurocognition, followed with a longitudinal analysis to track the changes. RESULTS: Significant group differences were found in all neurocognitive scores, school achievements, and twenty-five cortical regional volumes (P < 0.05, Bonferroni corrected). Specifically, lower gestational ages were associated with graded lower cognition and school achievements and with smaller brain volumes of the fronto-parieto-temporal, fusiform, cingulate, insula, postcentral, hippocampal, thalamic, and pallidal regions. These lower brain volumes mediated the association between gestational age and cognitive function (P = 1 × 10-8, ß = 0.017, 95% CI: 0.007-0.028). Longitudinal analysis showed that compared to full term adolescents, preterm adolescents still had smaller brain volumes and crystallized intelligence scores at 11-12 years. CONCLUSIONS: These results emphasize the relationships between gestational age at birth and adolescents' lower brain volume, and lower cognitive and educational performance, measured many years later when 9-10 and 11-12 years old. The study indicates the importance of early screening and close follow-up for neurocognitive and behavioral development for children and adolescents born with gestational ages that are even a little lower than full term.


Asunto(s)
Encéfalo , Recien Nacido Prematuro , Recién Nacido , Niño , Adolescente , Humanos , Lactante , Edad Gestacional , Estudios Longitudinales , Encéfalo/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética/métodos
7.
Natl Sci Rev ; 11(5): nwae080, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803564

RESUMEN

A computational human brain model with the voxel-wise assimilation method was established based on individual structural and functional imaging data. We found that the more similar the brain model is to the biological counterpart in both scale and architecture, the more similarity was found between the assimilated model and the biological brain both in resting states and during tasks by quantitative metrics. The hypothesis that resting state activity reflects internal body states was validated by the interoceptive circuit's capability to enhance the similarity between the simulation model and the biological brain. We identified that the removal of connections from the primary visual cortex (V1) to downstream visual pathways significantly decreased the similarity at the hippocampus between the model and its biological counterpart, despite a slight influence on the whole brain. In conclusion, the model and methodology present a solid quantitative framework for a digital twin brain for discovering the relationship between brain architecture and functions, and for digitally trying and testing diverse cognitive, medical and lesioning approaches that would otherwise be unfeasible in real subjects.

8.
Transl Psychiatry ; 14(1): 270, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956035

RESUMEN

Brain function is vulnerable to the consequences of inadequate sleep, an adverse trend that is increasingly prevalent. The REM sleep phase has been implicated in coordinating various brain structures and is hypothesized to have potential links to brain variability. However, traditional imaging research have encountered challenges in attributing specific brain region activity to REM sleep, remained understudied at the whole-brain connectivity level. Through the spilt-night paradigm, distinct patterns of REM sleep phases were observed among the full-night sleep group (n = 36), the early-night deprivation group (n = 41), and the late-night deprivation group (n = 36). We employed connectome-based predictive modeling (CPM) to delineate the effects of REM sleep deprivation on the functional connectivity of the brain (REM connectome) during its resting state. The REM sleep-brain connectome was characterized by stronger connectivity within the default mode network (DMN) and between the DMN and visual networks, while fewer predictive edges were observed. Notably, connections such as those between the cingulo-opercular network (CON) and the auditory network, as well as between the subcortex and visual networks, also made significant contributions. These findings elucidate the neural signatures of REM sleep loss and reveal common connectivity patterns across individuals, validated at the group level.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Privación de Sueño , Sueño REM , Humanos , Masculino , Privación de Sueño/fisiopatología , Privación de Sueño/diagnóstico por imagen , Sueño REM/fisiología , Femenino , Adulto , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto Joven , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología
9.
Nat Hum Behav ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956227

RESUMEN

Suicide is a global public health challenge, yet considerable uncertainty remains regarding the associations of both behaviour-related and physiological factors with suicide attempts (SA). Here we first estimated polygenic risk scores (PRS) for SA in 334,706 UK Biobank participants and conducted phenome-wide association analyses considering 2,291 factors. We identified 246 (63.07%) behaviour-related and 200 (10.41%, encompassing neuroimaging, blood and metabolic biomarkers, and proteins) physiological factors significantly associated with SA-PRS, with robust associations observed in lifestyle factors and mental health. Further case-control analyses involving 3,558 SA cases and 149,976 controls mirrored behaviour-related associations observed with SA-PRS. Moreover, Mendelian randomization analyses supported a potential causal effect of liability to 58 factors on SA, such as age at first intercourse, neuroticism, smoking, overall health rating and depression. Notably, machine-learning classification models based on behaviour-related factors exhibited high discriminative accuracy in distinguishing those with and without SA (area under the receiver operating characteristic curve 0.909 ± 0.006). This study provides comprehensive insights into diverse risk factors for SA, shedding light on potential avenues for targeted prevention and intervention strategies.

10.
Biol Psychiatry ; 95(12): 1122-1132, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199582

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) interacts with psychopathology in a complex way; however, little is known about the underlying brain, biochemical, and genetic mechanisms. METHODS: To clarify the phenotypic and genetic associations between IBS and brain health, we performed a comprehensive retrospective cohort study on a large population. Our study included 171,104 participants from the UK Biobank who underwent a thorough assessment of IBS, with the majority also providing neuroimaging, behavioral, biochemical, and genetic information. Multistage linked analyses were conducted, including phenome-wide association analysis, polygenic risk score calculation, and 2-sample Mendelian randomization analysis. RESULTS: The phenome-wide association analysis showed that IBS was linked to brain health problems, including anxiety and depression, and poor cognitive performance. Significantly lower brain volumes associated with more severe IBS were found in key areas related to emotional regulation and higher-order cognition, including the medial orbitofrontal cortex/ventromedial prefrontal cortex, anterior insula, anterior and mid-cingulate cortices, dorsolateral prefrontal cortex, and hippocampus. Higher triglycerides, lower high-intensity lipoprotein, and lower platelets were also related (p < 1 × 10-10) to more severe IBS. Finally, Mendelian randomization analyses demonstrated potential causal relationships between IBS and brain health and indicated possible mediating effects of dyslipidemia and inflammation. CONCLUSIONS: For the first time, this study provides a comprehensive understanding of the relationship between IBS and brain health phenotypes, integrating perspectives from neuroimaging, behavioral performance, biochemical factors, and genetics, which is of great significance for clinical applications to potentially address brain health impairments in patients with IBS.


Asunto(s)
Encéfalo , Síndrome del Colon Irritable , Neuroimagen , Humanos , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/diagnóstico por imagen , Femenino , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Persona de Mediana Edad , Estudios Retrospectivos , Análisis de la Aleatorización Mendeliana , Adulto , Anciano , Fenotipo , Imagen por Resonancia Magnética , Ansiedad/genética , Ansiedad/diagnóstico por imagen , Estudio de Asociación del Genoma Completo
11.
Nat Commun ; 15(1): 1544, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378947

RESUMEN

Uncertainty about potential future threats and the associated anxious anticipation represents a key feature of anxiety. However, the neural systems that underlie the subjective experience of threat anticipation under uncertainty remain unclear. Combining an uncertainty-variation threat anticipation paradigm that allows precise modulation of the level of momentary anxious arousal during functional magnetic resonance imaging (fMRI) with multivariate predictive modeling, we train a brain model that accurately predicts subjective anxious arousal intensity during anticipation and test it across 9 samples (total n = 572, both gender). Using publicly available datasets, we demonstrate that the whole-brain signature specifically predicts anxious anticipation and is not sensitive in predicting pain, general anticipation or unspecific emotional and autonomic arousal. The signature is also functionally and spatially distinguishable from representations of subjective fear or negative affect. We develop a sensitive, generalizable, and specific neuroimaging marker for the subjective experience of uncertain threat anticipation that can facilitate model development.


Asunto(s)
Ansiedad , Emociones , Incertidumbre , Miedo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Anticipación Psicológica
12.
Nat Hum Behav ; 8(4): 779-793, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38182882

RESUMEN

Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipotálamo , Humanos , Hipotálamo/metabolismo , Hipotálamo/diagnóstico por imagen , Masculino , Femenino , Adulto , Trastornos Mentales/genética , Proteínas ADAMTS/genética , Persona de Mediana Edad , Análisis de la Aleatorización Mendeliana
13.
Elife ; 122023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37399053

RESUMEN

Close friendships are important for mental health and cognition in late childhood. However, whether the more close friends the better, and the underlying neurobiological mechanisms are unknown. Using the Adolescent Brain Cognitive Developmental study, we identified nonlinear associations between the number of close friends, mental health, cognition, and brain structure. Although few close friends were associated with poor mental health, low cognitive functions, and small areas of the social brain (e.g., the orbitofrontal cortex, the anterior cingulate cortex, the anterior insula, and the temporoparietal junction), increasing the number of close friends beyond a level (around 5) was no longer associated with better mental health and larger cortical areas, and was even related to lower cognition. In children having no more than five close friends, the cortical areas related to the number of close friends revealed correlations with the density of µ-opioid receptors and the expression of OPRM1 and OPRK1 genes, and could partly mediate the association between the number of close friends, attention-deficit/hyperactivity disorder (ADHD) symptoms, and crystalized intelligence. Longitudinal analyses showed that both too few and too many close friends at baseline were associated with more ADHD symptoms and lower crystalized intelligence 2 y later. Additionally, we found that friendship network size was nonlinearly associated with well-being and academic performance in an independent social network dataset of middle-school students. These findings challenge the traditional idea of 'the more, the better,' and provide insights into potential brain and molecular mechanisms.


Close friendships are crucial during the transition from late childhood to adolescence as children become more independent from their parents and influenced by their peers. The brain undergoes a tremendous amount of development during this period, and it is also a time when mental health disorders often begin to emerge. Scientists are still learning about how friendships shape brain development and mental health during this transition. Maintaining friendships takes time and mental resources so there may be limits on how many friends are beneficial. Here, Shen, Rolls et al. show that the having more friends is not always directly related to better mental health and cognitive abilities. In the study, Shen, Rolls et al. analyzed data from nearly 7,500 young people between around 10 to 12 years old: this included, their number of close friends, their mental health and cognitive abilities such as working memory, attention and processing speed, and images of their brains. Data from a second set of about 16,000 young people were then analyzed to confirm the results. Shen, Rolls et al. found having a higher number of close friends was associated with improved mental health and cognitive ability. However, this association stopped once around five friends had been reached, after which having more friends was no longer linked to better mental health and was even correlated with lower cognition. Additionally, individuals with too few or too many friends had more symptoms of Attention-deficit/hyperactivity disorder (ADHD) and were less able to learn from their experiences. This non-linear relationship between number of friends and mental health and cognitive abilities can be partly explained by the structure of the brain. Shen, Rolls et al. found that brain regions associated with friendship were larger in individuals with more close friends, but did not increase any further once the number of friends a person had exceeded five individuals with around five close friends also had more of a receptor that is part of the opioid system, which may make them more responsive to laughter, friendly touch, or other positive social interactions. These findings challenge the idea that having more friends is always better. It also provides insights into how friendships affect brain health during the transition from late childhood to adolescence. Insights from this study may aid the development of interventions to support healthy brain development during youth.


Asunto(s)
Amigos , Salud Mental , Adolescente , Humanos , Niño , Amigos/psicología , Grupo Paritario , Cognición , Encéfalo
14.
Alzheimers Res Ther ; 15(1): 109, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312172

RESUMEN

BACKGROUND: The correlations between genetic risk for Alzheimer's disease (AD) with comprehensive brain regions at a regional scale are still not well understood. We aim to explore whether these associations vary across different age stages. METHODS: This study used large existing genome-wide association datasets to calculate polygenic risk score (PRS) for AD in two populations from the UK Biobank (N ~ 23 000) and Adolescent Brain Cognitive Development Study (N ~ 4660) who had multimodal macrostructural and microstructural magnetic resonance imaging (MRI) metrics. We used linear mixed-effect models to assess the strength of the association between AD PRS and multiple MRI metrics of regional brain structures at different stages of life. RESULTS: Compared to those with lower PRSs, adolescents with higher PRSs had thinner cortex in the caudal anterior cingulate and supramarginal. In the middle-aged and elderly population, AD PRS had correlations with regional structure shrink primarily located in the cingulate, prefrontal cortex, hippocampus, thalamus, amygdala, and striatum, whereas the brain expansion was concentrated near the occipital lobe. Furthermore, both adults and adolescents with higher PRSs exhibited widespread white matter microstructural changes, indicated by decreased fractional anisotropy (FA) or increased mean diffusivity (MD). CONCLUSIONS: In conclusion, our results suggest genetic loading for AD may influence brain structures in a highly dynamic manner, with dramatically different patterns at different ages. This age-specific change is consistent with the classical pattern of brain impairment observed in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Adolescente , Persona de Mediana Edad , Humanos , Adulto , Anciano , Niño , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Encéfalo/diagnóstico por imagen , Cognición , Amígdala del Cerebelo
15.
medRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077063

RESUMEN

Striatal dopaminergic overactivity was hypothesized as the core pathophysiology of schizophrenia. However, morphological alterations of striatum in schizophrenia remains exclusive, largely because brain regional heterogeneity limited traditional group-mean based approach. Leveraging third-party brain maps of neurotransmitter and cognition behaviours, we developed a pattern-based representation feature score (ReFS) to investigate structural spatial pattern variation in schizophrenia. Structural ReFS of subcortical regions, particularly the striatum, were linked to schizophrenia diagnosis, symptom severity, and genetic susceptibility. Dopaminergic-ReFS of striatum was increased in schizophrenia patients and reliably reproduced across 13 datasets. The pattern-based ReFS effectively captured the shared genetic pathways underlying both schizophrenia and striatum. The results provide convergent, multimodal suggest the central role of striatal spatial patterns in schizophrenia psychopathologies and and open new avenues to develop individualized treatments for psychotic disorders.

16.
Nat Commun ; 14(1): 4684, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582920

RESUMEN

Smoking of cigarettes among young adolescents is a pressing public health issue. However, the neural mechanisms underlying smoking initiation and sustenance during adolescence, especially the potential causal interactions between altered brain development and smoking behaviour, remain elusive. Here, using large longitudinal adolescence imaging genetic cohorts, we identify associations between left ventromedial prefrontal cortex (vmPFC) gray matter volume (GMV) and subsequent self-reported smoking initiation, and between right vmPFC GMV and the maintenance of smoking behaviour. Rule-breaking behaviour mediates the association between smaller left vmPFC GMV and smoking behaviour based on longitudinal cross-lagged analysis and Mendelian randomisation. In contrast, smoking behaviour associated longitudinal covariation of right vmPFC GMV and sensation seeking (especially hedonic experience) highlights a potential reward-based mechanism for sustaining addictive behaviour. Taken together, our findings reveal vmPFC GMV as a possible biomarker for the early stages of nicotine addiction, with implications for its prevention and treatment.


Asunto(s)
Sustancia Gris , Tabaquismo , Humanos , Adolescente , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/diagnóstico por imagen , Fumar/efectos adversos , Encéfalo
17.
medRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790416

RESUMEN

Adolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages and the neurobiological basis underlying individual heterogeneity remains poorly understood. Using structural magnetic resonance imaging from the IMAGEN cohort (n=1,543), we show that adolescents can be clustered into three groups defined by distinct developmental patterns of whole-brain gray matter volume (GMV). Genetic and epigenetic determinants of group clustering and long-term impacts of neurodevelopment in mid-to-late adulthood were investigated using data from the ABCD, IMAGEN and UK Biobank cohorts. Group 1, characterized by continuously decreasing GMV, showed generally the best neurocognitive performances during adolescence. Compared to Group 1, Group 2 exhibited a slower rate of GMV decrease and worsened neurocognitive development, which was associated with epigenetic changes and greater environmental burden. Further, Group 3 showed increasing GMV and delayed neurocognitive development during adolescence due to a genetic variation, while these disadvantages were attenuated in mid-to-late adulthood. In summary, our study revealed novel clusters of adolescent structural neurodevelopment and suggested that genetically-predicted delayed neurodevelopment has limited long-term effects on mental well-being and socio-economic outcomes later in life. Our results could inform future research on policy interventions aimed at reducing the financial and emotional burden of mental illness.

18.
Nat Med ; 29(5): 1232-1242, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095248

RESUMEN

Recent studies proposed a general psychopathology factor underlying common comorbidities among psychiatric disorders. However, its neurobiological mechanisms and generalizability remain elusive. In this study, we used a large longitudinal neuroimaging cohort from adolescence to young adulthood (IMAGEN) to define a neuropsychopathological (NP) factor across externalizing and internalizing symptoms using multitask connectomes. We demonstrate that this NP factor might represent a unified, genetically determined, delayed development of the prefrontal cortex that further leads to poor executive function. We also show this NP factor to be reproducible in multiple developmental periods, from preadolescence to early adulthood, and generalizable to the resting-state connectome and clinical samples (the ADHD-200 Sample and the Stratify Project). In conclusion, we identify a reproducible and general neural basis underlying symptoms of multiple mental health disorders, bridging multidimensional evidence from behavioral, neuroimaging and genetic substrates. These findings may help to develop new therapeutic interventions for psychiatric comorbidities.


Asunto(s)
Trastornos Mentales , Adolescente , Humanos , Adulto Joven , Comorbilidad , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/epidemiología , Trastornos Mentales/psicología , Neuroimagen , Psicopatología
19.
medRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873296

RESUMEN

Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.

20.
Schizophrenia (Heidelb) ; 8(1): 95, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371445

RESUMEN

Both the ability to speak and to infer complex linguistic messages from sounds have been claimed as uniquely human phenomena. In schizophrenia, formal thought disorder (FTD) and auditory verbal hallucinations (AVHs) are manifestations respectively relating to concrete disruptions of those abilities. From an evolutionary perspective, Crow (1997) proposed that "schizophrenia is the price that Homo sapiens pays for the faculty of language". Epidemiological and experimental evidence points to an overlap between FTD and AVHs, yet a thorough investigation examining their shared neural mechanism in schizophrenia is lacking. In this review, we synthesize observations from three key domains. First, neuroanatomical evidence indicates substantial shared abnormalities in language-processing regions between FTD and AVHs, even in the early phases of schizophrenia. Second, neurochemical studies point to a glutamate-related dysfunction in these language-processing brain regions, contributing to verbal production deficits. Third, genetic findings further show how genes that overlap between schizophrenia and language disorders influence neurodevelopment and neurotransmission. We argue that these observations converge into the possibility that a glutamatergic dysfunction in language-processing brain regions might be a shared neural basis of both FTD and AVHs. Investigations of language pathology in schizophrenia could facilitate the development of diagnostic tools and treatments, so we call for multilevel confirmatory analyses focused on modulations of the language network as a therapeutic goal in schizophrenia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA