Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526163

RESUMEN

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Asunto(s)
Azepinas/farmacología , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Interneuronas/patología , Proteína 2 de Unión a Metil-CpG/fisiología , Síndrome de Rett/patología , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Triazoles/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Femenino , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Factores de Transcripción/genética
2.
Semin Cell Dev Biol ; 111: 40-51, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32553582

RESUMEN

Brain organoids, three-dimensional neural cultures recapitulating the spatiotemporal organization and function of the brain in a dish, offer unique opportunities for investigating the human brain development and diseases. To model distinct parts of the brain, various region-specific human brain organoids have been developed. In this article, we review current approaches to produce human region-specific brain organoids, developed through the endeavor of many researchers. We highlight the applications of human region-specific brain organoids, especially in reconstructing regional interactions in the brain through organoid fusion. We also outline the existing challenges to drive forward further the brain organoid technology and its applications for future studies.


Asunto(s)
Encéfalo/metabolismo , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Organoides/metabolismo , Técnicas de Cultivo de Tejidos , Encéfalo/patología , Mapeo Encefálico , Diferenciación Celular , Fusión Celular , Movimiento Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Organoides/citología
3.
Nat Methods ; 16(11): 1169-1175, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31591580

RESUMEN

Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.


Asunto(s)
Encéfalo/irrigación sanguínea , Células Madre Embrionarias Humanas/citología , Organoides/irrigación sanguínea , Ingeniería de Tejidos/métodos , Animales , Barrera Hematoencefálica , Células Cultivadas , Humanos , Ratones , Análisis de la Célula Individual , Factores de Transcripción/fisiología
4.
Biochem Biophys Res Commun ; 453(4): 821-5, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25450354

RESUMEN

Influenza A virus (IAV) assembly and budding on host cell surface plasma membrane requires actin cytoskeleton reorganization. The underlying molecular mechanism involving actin reorganization remains unclarified. In this study, we found that the natural antiviral compound petagalloyl glucose (PGG) inhibits F-actin reorganization in the host cell membrane during the late stage of IAV infection, which are associated with the suppression of total cofilin-1 level and its phosphorylation. Knock-down of cofilin-1 reduces viral yields. These findings provide the first evidence that cofilin-1 plays an important role in regulating actin reorganization during IAV assembly and budding.


Asunto(s)
Actinas/metabolismo , Cofilina 1/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/ultraestructura , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología , Liberación del Virus/fisiología , Regulación Viral de la Expresión Génica/fisiología , Virus de la Influenza A/aislamiento & purificación
5.
Biochem Biophys Res Commun ; 446(1): 160-6, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24582562

RESUMEN

Heat shock protein 90 (Hsp90) has been predicted to be involved in hepatocellular carcinoma (HCC) therapy; however, the mechanisms of action remain elusive. SNX-2112 is an Hsp90 inhibitor showing broad antitumor activity. Here we aim to determine the role of the endoplasmic reticulum (ER) stress in SNX-2112-induced apoptosis in HCC cells. In general, three HCC cells (i.e., HepG2, Huh7, and SK-Hep1) were used in our experiments. The cell viability was determined by the CCK-8 assay. The apoptosis was analyzed using flow cytometry, laser scanning confocal microscopy (LSM) and Western blotting. The efficacy and mechanisms of action of SNX-2112 were also evaluated in a mouse xenograft model. We found that SNX-2112 showed stronger inhibition on cell growth than 17-AAG, a classical Hsp90 inhibitor. SNX-2112 treatment led to the caspase-dependent apoptosis. Interestingly, SNX-2112 decreased the expression levels of the ER chaperone proteins calnexin and immunoglobulin binding protein (BiP). It also inhibited all three ER stress sensors, namely, inositol-requiring gene 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF-6) in vitro and/or in vivo. However, the ER stress inducer tunicamycin strongly enhanced SNX-2112-induced apoptosis, whereas the IRE1 knockdown did not. Taken together, we for the first time indicated the possible apoptotic pathways of SNX-2112 in HCC cells, raising the possibility that the induction of ER stress might be favorable for SNX-2112-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Caspasas/metabolismo , Línea Celular Tumoral , Células Hep G2 , Xenoinjertos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 446(4): 990-6, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24657267

RESUMEN

Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.


Asunto(s)
Antivirales/farmacología , Canales de Cloruro/antagonistas & inhibidores , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Nitrobenzoatos/farmacología , Tamoxifeno/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Canales de Cloruro/metabolismo , Chlorocebus aethiops , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Células Vero
7.
Neuron ; 112(3): 362-383.e15, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38016472

RESUMEN

Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.


Asunto(s)
Ataxias Espinocerebelosas , Animales , Ratones , Humanos , Ataxina-1/genética , Ratones Transgénicos , Ataxias Espinocerebelosas/metabolismo , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Modelos Animales de Enfermedad
8.
Biochem Biophys Res Commun ; 437(3): 482-8, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23850690

RESUMEN

Autophagy plays a crucial role in a wide array of physiological processes. To uncover the complex regulatory networks and mechanisms underlying basal autophagy, we performed a quantitative proteomics analysis of autophagy-deficient mouse embryonic fibroblast cells (MEFs) using iTRAQ labeling coupled with on-line 2D LC/MS/MS. We quantified a total of 1234 proteins and identified 114 proteins that were significantly altered (90% confidence interval), including 48 up-regulated proteins and 66 down-regulated proteins. We determined that F-actin was disassembled in autophagy-deficient Atg7(-/-) MEFs. Treatment of the WT MEFs with cytochalasin D (CD), which induces F-actin depolymerization, significantly induced autophagosome formation. However, treatment with cytochalasin D also increased the protein level of p62 under starvation conditions, suggesting that depolymerization of F-actin impaired autophagosome maturation and that the intact F-actin network is required for basal and starvation-induced autophagy. Our results demonstrate a close relationship between F-actin and autophagy and provide the basis for further investigation of their interactions.


Asunto(s)
Actinas/fisiología , Autofagia/genética , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas Asociadas a Microtúbulos/deficiencia , Proteómica/métodos , Actinas/genética , Animales , Proteína 7 Relacionada con la Autofagia , Línea Celular Transformada , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Ratones , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Fagosomas/metabolismo , Fagosomas/patología , Mapas de Interacción de Proteínas/genética
9.
J Virol ; 86(16): 8440-51, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623803

RESUMEN

Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis.


Asunto(s)
Actinas/metabolismo , Cofilina 1/metabolismo , Herpesvirus Humano 1/fisiología , Neuronas/metabolismo , Neuronas/virología , Internalización del Virus , Replicación Viral , Línea Celular , Humanos
10.
Sci Adv ; 9(31): eadf2245, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540754

RESUMEN

Three-dimensional (3D) genomics shows immense promise for studying X chromosome inactivation (XCI) by interrogating changes to the X chromosomes' 3D states. Here, we sought to characterize the 3D state of the X chromosome in naïve and primed human pluripotent stem cells (hPSCs). Using chromatin tracing, we analyzed X chromosome folding conformations in these cells with megabase genomic resolution. X chromosomes in female naïve hPSCs exhibit folding conformations similar to the active X chromosome (Xa) and the inactive X chromosome (Xi) in somatic cells. However, naïve X chromosomes do not exhibit the chromatin compaction typically associated with these somatic X chromosome states. In H7 naïve human embryonic stem cells, XIST accumulation observed on damaged X chromosomes demonstrates the potential for naïve hPSCs to activate XCI-related mechanisms. Overall, our findings provide insight into the X chromosome status of naïve hPSCs with a single-chromosome resolution and are critical in understanding the unique epigenetic regulation in early embryonic cells.


Asunto(s)
Células Madre Pluripotentes , ARN Largo no Codificante , Humanos , Femenino , Epigénesis Genética , Cromosomas Humanos X/genética , ARN Largo no Codificante/genética , Cromatina/genética
11.
Cell Rep ; 42(1): 111942, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640327

RESUMEN

Mutations in the MECP2 gene underlie a spectrum of neurodevelopmental disorders, most commonly Rett syndrome (RTT). We ask whether MECP2 mutations interfere with human astrocyte developmental maturation, thereby affecting their ability to support neurons. Using human-based models, we show that RTT-causing MECP2 mutations greatly impact the key role of astrocytes in regulating overall brain bioenergetics and that these metabolic aberrations are likely mediated by dysfunctional mitochondria. During post-natal maturation, astrocytes rely on neurons to induce their complex stellate morphology and transcriptional changes. While MECP2 mutations cause cell-intrinsic aberrations in the astrocyte transcriptional landscape, surprisingly, they do not affect the neuron-induced astrocyte gene expression. Notably, however, astrocytes are unable to develop complex mature morphology due to cell- and non-cell-autonomous aberrations caused by MECP2 mutations. Thus, MECP2 mutations critically impact key cellular and molecular features of human astrocytes and, hence, their ability to interact and support the structural and functional maturation of neurons.


Asunto(s)
Astrocitos , Síndrome de Rett , Humanos , Astrocitos/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Mutación/genética
12.
Cell Rep ; 42(6): 112546, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224015

RESUMEN

Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.


Asunto(s)
Embarazo Ectópico , Trofoblastos , Embarazo , Humanos , Femenino , Placenta/patología , Embarazo Ectópico/patología , Implantación del Embrión , Organoides
13.
Cell Stem Cell ; 30(5): 677-688.e5, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37019105

RESUMEN

Human brain organoids provide unique platforms for modeling several aspects of human brain development and pathology. However, current brain organoid systems mostly lack the resolution to recapitulate the development of finer brain structures with subregional identity, including functionally distinct nuclei in the thalamus. Here, we report a method for converting human embryonic stem cells (hESCs) into ventral thalamic organoids (vThOs) with transcriptionally diverse nuclei identities. Notably, single-cell RNA sequencing revealed previously unachieved thalamic patterning with a thalamic reticular nucleus (TRN) signature, a GABAergic nucleus located in the ventral thalamus. Using vThOs, we explored the functions of TRN-specific, disease-associated genes patched domain containing 1 (PTCHD1) and receptor tyrosine-protein kinase (ERBB4) during human thalamic development. Perturbations in PTCHD1 or ERBB4 impaired neuronal functions in vThOs, albeit not affecting the overall thalamic lineage development. Together, vThOs present an experimental model for understanding nuclei-specific development and pathology in the thalamus of the human brain.


Asunto(s)
Núcleos Talámicos , Tálamo , Humanos , Núcleos Talámicos/patología , Núcleos Talámicos/fisiología , Neuronas/fisiología , Organoides
14.
J Clin Invest ; 133(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37384409

RESUMEN

Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although mutations in TARDBP, encoding transactive response DNA-binding protein 43 kDa (TDP-43), account for less than 1% of all ALS cases, TDP-43-positive aggregates are present in nearly all ALS patients, including patients with sporadic ALS (sALS) or carrying other familial ALS-causing (fALS-causing) mutations. Interestingly, TDP-43 inclusions are also present in subsets of patients with frontotemporal dementia, Alzheimer's disease, and Parkinson's disease; therefore, methods of activating intracellular protein quality control machinery capable of clearing toxic cytoplasmic TDP-43 species may alleviate disease-related phenotypes. Here, we identify a function of nemo-like kinase (Nlk) as a negative regulator of lysosome biogenesis. Genetic or pharmacological reduction of Nlk increased lysosome formation and improved clearance of aggregated TDP-43. Furthermore, Nlk reduction ameliorated pathological, behavioral, and life span deficits in 2 distinct mouse models of TDP-43 proteinopathy. Because many toxic proteins can be cleared through the autophagy/lysosome pathway, targeted reduction of Nlk represents a potential approach to therapy development for multiple neurodegenerative disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Lisosomas/metabolismo , Enfermedades Neurodegenerativas/genética , Humanos
15.
Exp Mol Med ; 55(9): 2005-2024, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653039

RESUMEN

The lack of physiological parity between 2D cell culture and in vivo culture has led to the development of more organotypic models, such as organoids. Organoid models have been developed for a number of tissues, including the liver. Current organoid protocols are characterized by a reliance on extracellular matrices (ECMs), patterning in 2D culture, costly growth factors and a lack of cellular diversity, structure, and organization. Current hepatic organoid models are generally simplistic and composed of hepatocytes or cholangiocytes, rendering them less physiologically relevant compared to native tissue. We have developed an approach that does not require 2D patterning, is ECM independent, and employs small molecules to mimic embryonic liver development that produces large quantities of liver-like organoids. Using single-cell RNA sequencing and immunofluorescence, we demonstrate a liver-like cellular repertoire, a higher order cellular complexity, presenting with vascular luminal structures, and a population of resident macrophages: Kupffer cells. The organoids exhibit key liver functions, including drug metabolism, serum protein production, urea synthesis and coagulation factor production, with preserved post-translational modifications such as N-glycosylation and functionality. The organoids can be transplanted and maintained long term in mice producing human albumin. The organoids exhibit a complex cellular repertoire reflective of the organ and have de novo vascularization and liver-like function. These characteristics are a prerequisite for many applications from cellular therapy, tissue engineering, drug toxicity assessment, and disease modeling to basic developmental biology.


Asunto(s)
Hígado , Organoides , Humanos , Animales , Ratones , Ingeniería de Tejidos , Hepatocitos , Células Cultivadas
16.
Protein Expr Purif ; 82(1): 186-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22251882

RESUMEN

Cofilin1 is an actin-binding protein that plays a critical role in the regulation of actin cytoskeleton and consequently affects various physiological processes. In this study, the human Cofilin1 cDNA was cloned into the expression vector pET-28a(+) with a 6 × His tag and expressed as soluble protein in Escherichia coli BL21(DE3). Approximately 78 mg of Cofilin1, which showed high activity as determined by native PAGE, could be purified from each liter of LB medium by His-tag affinity chromatography and gel filtration. Further, high-titer IgG against Cofilin1 was positively detected after immunization in rabbits and the polyclonal antibodies were purified and identified. Together, this report provides the first protocol to efficiently obtain human Cofilin1 with high biological activity and immunogenicity using E. coli BL21 (DE3) expression system.


Asunto(s)
Clonación Molecular , Cofilina 1/genética , Cofilina 1/aislamiento & purificación , Animales , Anticuerpos/inmunología , Cromatografía de Afinidad , Cofilina 1/química , Cofilina 1/inmunología , ADN Complementario/genética , Escherichia coli/genética , Histidina/genética , Humanos , Inmunización , Oligopéptidos/genética , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Solubilidad
17.
Bioorg Med Chem Lett ; 22(14): 4703-6, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22704890

RESUMEN

After the widespread use of the acyclic purine nucleoside analogues for therapy of herpes simplex virus (HSV) infection since the 1980s, new antiviral strategies are urgently needed to counter the emergence of drug-resistant clinical isolates. In this report, we define the anti-HSV efficacies of three optimized 2-aminobenzamide derivatives in vitro and in vivo. The synthetic analogues SNX-25a, SNX-2112 and SNX-7081, which selectively bind to the N-terminal ATP pocket of heat shock protein 90 (HSP90), exhibited significant anti-HSV-1 and HSV-2 activities at non-cytotoxic concentrations in Vero cells, with EC(50) values close to that of acyclovir (ACV). The in vivo antiviral potentials were then confirmed using a herpes simplex keratitis (HSK) rabbit model, where eye gels containing 0.1% or 0.025% SNX-25a displayed the highest efficacies against HSV-1 infection, which were better than that obtained with 0.1% ACV. SNX-2112 and SNX-7081 gels were also effective against HSV-1 with different magnitude of activities. Our results for the first time confirmed the anti-HSV efficacies of these 2-aminobenzamide derivatives and suggest that with alternative mechanisms of action these novel HSP90 inhibitors, especially SNX-25a, could be potent as new anti-HSV clinical trial candidates.


Asunto(s)
Antivirales/química , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Herpesvirus Humano 1/efectos de los fármacos , ortoaminobenzoatos/química , Animales , Antivirales/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Estructura Molecular , Conejos , Relación Estructura-Actividad , ortoaminobenzoatos/farmacología
18.
Cell Regen ; 11(1): 1, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982276

RESUMEN

Studying the etiology of human neurodevelopmental diseases has long been a challenging task due to the brain's complexity and its limited accessibility. Human pluripotent stem cells (hPSCs)-derived brain organoids are capable of recapitulating various features and functionalities of the human brain, allowing the investigation of intricate pathogenesis of developmental abnormalities. Over the past years, brain organoids have facilitated identifying disease-associated phenotypes and underlying mechanisms for human neurodevelopmental diseases. Integrating with more cutting-edge technologies, particularly gene editing, brain organoids further empower human disease modeling. Here, we review the latest progress in modeling human neurodevelopmental disorders with brain organoids.

19.
Front Cell Dev Biol ; 10: 967147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016658

RESUMEN

Dyslexia, also known as reading disability, is defined as difficulty processing written language in individuals with normal intellectual capacity and educational opportunity. The prevalence of dyslexia is between 5 and 17%, and the heritability ranges from 44 to 75%. Genetic linkage analysis and association studies have identified several genes and regulatory elements linked to dyslexia and reading ability. However, their functions and molecular mechanisms are not well understood. Prominent among these is KIAA0319, encoded in the DYX2 locus of human chromosome 6p22. The association of KIAA0319 with reading performance has been replicated in independent studies and different languages. Rodent models suggest that kiaa0319 is involved in neuronal migration, but its role throughout the cortical development is largely unknown. In order to define the function of KIAA0319 in human cortical development, we applied the neural developmental model of a human embryonic stem cell. We knocked down KIAA0319 expression in hESCs and performed the cortical neuroectodermal differentiation. We found that neuroepithelial cell differentiation is one of the first stages of hESC differentiation that are affected by KIAA0319 knocked down could affect radial migration and thus differentiation into diverse neural populations at the cortical layers.

20.
Nat Commun ; 13(1): 430, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058453

RESUMEN

Microglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available. Here, we develop a method to generate functional microglia in human cortical organoids (hCOs) from human embryonic stem cells (hESCs). We apply this system to study the role of microglia during inflammation induced by amyloid-ß (Aß). The overexpression of the myeloid-specific transcription factor PU.1 generates microglia-like cells in hCOs, producing mhCOs (microglia-containing hCOs), that we engraft in the mouse brain. Single-cell transcriptomics reveals that mhCOs acquire a microglia cell cluster with an intact complement and chemokine system. Functionally, microglia in mhCOs protect parenchyma from cellular and molecular damage caused by Aß. Furthermore, in mhCOs, we observed reduced expression of Aß-induced expression of genes associated with apoptosis, ferroptosis, and Alzheimer's disease (AD) stage III. Finally, we assess the function of AD-associated genes highly expressed in microglia in response to Aß using pooled CRISPRi coupled with single-cell RNA sequencing in mhCOs. In summary, we provide a protocol to generate mhCOs that can be used in fundamental and translational studies as a model to investigate the role of microglia in neurodevelopmental and neurodegenerative disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Microglía/metabolismo , Organoides/citología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Animales , Sistemas CRISPR-Cas/genética , Linaje de la Célula/efectos de los fármacos , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/ultraestructura , Humanos , Ratones , Microglía/efectos de los fármacos , Microglía/ultraestructura , Organoides/metabolismo , Fagocitosis/efectos de los fármacos , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA