Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Inorg Chem ; 63(6): 3063-3074, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38285631

RESUMEN

Phenanthroline diamide ligands have been widely used in the separation of trivalent actinides and lanthanides, but little research has focused on extractants with asymmetrical substitutes. Two novel asymmetrical phenanthroline-based ligands N2,N2,N9-triethyl-N9-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DE-ET-DAPhen) and N2-ethyl-N9,N9-dioctyl-N2-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DO-ET-DAPhen) were first synthesized in this work, whose extraction ability and complexation mechanism to trivalent actinides [An(III)] and lanthanides [Ln(III)] were systematically investigated. The ligands dissolved in n-octanol exhibit good extraction ability and high selectivity toward Am(III) in acidic solutions. The complexation mechanism of the ligands with Ln(III) in solution and solid state was analyzed using slope analysis, 1H NMR spectrometric titration, ESI-MS, and calorimetric titration. It is revealed that the ligands complex with Am(III)/Eu(III) with 1:1 stoichiometry. The stability constant (log ß) of the complexation reaction of Eu(III) with DE-ET-DAPhen determined by UV-vis spectrophotometric and calorimetric titration is higher than that of DO-ET-DAPhen, indicating the stronger complexation ability of DE-ET-DAPhen. Meanwhile, the calorimetric titration results show that the complexation process is exothermic with a decreased entropy. The structures of 1:1 complexes of Eu(III) and Nd(III) with DE-ET-DAPhen were analyzed through single-crystal X-ray diffraction. This work proves that ligands containing asymmetrical functional groups are promising for An(III)/Ln(III) separation, which shows great significance in efficient extractants designed for the spent nuclear fuel reprocessing process.

2.
Inorg Chem ; 63(18): 8171-8179, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38655575

RESUMEN

Although 1,10-phenanthroline has been proven to hold a strong complexing capacity for f-block elements and their derivatives have been applied in many fields, research on more highly or completely rigid phenanthroline ligands is still rare due to the challenging syntheses. Here, we reported three tetradentate ligands 2,9-di(pyridin-2-yl)-1,10-phenanthroline (L1), 12-(pyridin-2-yl)-5,6-dihydroquinolino[8,7b][1,10]phenanthroline (L2), and 5,6,11,12-tetrahydrobenzo[2,1-b:3,4-b']bis([1,10]phenanthroline) (L3) with increasing preorganization on the side chain; among which, L3 is fully preorganized. Their complexation reactions with Eu(III) were systematically investigated by electrospray ionization mass spectrometry (ESI-MS), UV-vis titrations, and single-crystal structures. It is found that all three ligands form only 1:1 M/L complexes with Eu(III). The single-crystal structures revealed that the three ligands hold similar coordination modes, while their stability constants determined by UV-vis titrations were L3 (4.80 ± 0.01) > L2 (4.38 ± 0.01) > L1 (3.88 ± 0.01). This trend is supported not only by the thermodynamic stability of rigid ligands compared to free ligands but also by the conclusion that rigid ligands exhibit faster reaction rates (lower energy barrier) than free ligands kinetically. This work is helpful in providing theoretical guidance for the subsequent development of highly preorganized chelating ligands with strong coordination ability and high selectivity for f-block elements.

3.
Small ; : e2308451, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059738

RESUMEN

Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3 I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3 I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2 O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2 ) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3 I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1 , respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3 I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3 I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.

4.
Chemistry ; 29(33): e202300456, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37013708

RESUMEN

The separation of actinides from lanthanides in spent nuclear fuel reprocessing is a vital step of nuclear fuel cycle process. As one class of mature industrial extractants, the organophosphorus extractants have been widely used for the extraction and separation of actinides and lanthanides in spent fuel reprocessing due to their strong extraction ability and low-cost acquisition. In this concept, the application scope of tributyl phosphate (TBP), bis(2-ethylhexyl) phosphate (HDEHP), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), trialkyl phosphine oxide (TRPO), and purified Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid, HA301) are introduced, and their extraction mechanism, as well as structure-function relationships for separation of actinides over lanthanides are also discussed. Furthermore, the design criteria, extraction properties and mechanism of several typical newly developed organophosphorus extractants (CMPO-modified calixarene/pillarene, phenanthroline-derived organophosphorus extractants, and phosphate-modified carborane) based on pre-organized skeletons are briefly reviewed. Finally, the important role played by those organophosphorus extractants is emphasized and potential applications in separation of actinides over lanthanides in future advanced nuclear fuel cycle are identified.


Asunto(s)
Elementos de Series Actinoides , Elementos de la Serie de los Lantanoides , Óxidos , Fosfatos
5.
Molecules ; 28(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959761

RESUMEN

Cl, Br, and I are elements in the halogen family, and are often used as dopants in semiconductors. When employed as dopants, these halogens can significantly modify the optoelectronic properties of materials. From the perspective of halogen doping, we have successfully achieved the stabilization of crystal structures in CH3NH3PbX3, CH3NH3PbI3-xClx, CH3NH3PbI3-xBrx, and CH3NH3PbBr3-xClx, which are organic-inorganic hybrid perovskites. Utilizing first-principles density functional theory calculations with the CASTEP module, we investigated the optoelectronic properties of these structures by simulations. According to the calculations, a smaller difference in electronegativity between different halogens in doped structures can result in smoother energy bands, especially in CH3NH3PbI3-xBrx and CH3NH3PbBr3-xClx. The PDOS of the Cl-3p orbitals undergoes a shift along the energy axis as a result of variances in electronegativity levels. The optoelectronic performance, carrier mobility, and structural stability of the CH3NH3PbBr3-xClx system are superior to other systems like CH3NH3PbX3. Among many materials considered, CH3NH3PbBr2Cl exhibits higher carrier mobility and a relatively narrower bandgap, making it a more suitable material for the absorption layer in solar cells. This study provides valuable insights into the methodology employed for the selection of specific types, quantities, and positions of halogens for further research on halogen doping.

6.
Anal Chem ; 94(9): 3744-3748, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35213129

RESUMEN

Nitrogen-rich heterocyclic compounds (NRHCs) are an emerging type of explosive, and their quantification is important in national security inspection and environmental monitoring. Up until now, designing an efficient NRHCs sensing strategy was still in the early stages. Herein, a new metal-organic framework (MOF) with aggregation-induced emission (AIE) characteristics is synthesized with fluorometric/colorimetric responses for rapid and selective detection of NRHCs. The nonemissive probe is designed with tetraphenylethylene derivative as the linker and Co as the node, quencher, and color-changing agent. Cobalt AIE-MOF exhibits a turn-on emission enhancement due to the competitive coordination substitution between NRHCs and the scaffold as well as the following AIE process of the liberative linkers. Meanwhile, the color appearance of the probe changes from blue to yellow based on the dissociation of the original Co coordinating system. Using this dual-mode probe, single- and dual-ring NRHCs are successfully detected from 5 µM to 7.5 mM within 25 s. The cobalt AIE-MOF exhibits excellent selectivity of NRHCs against a variety of interferences, providing a promising tool for designing a multichannel detection strategy.


Asunto(s)
Compuestos Heterocíclicos , Estructuras Metalorgánicas , Cobalto , Colorimetría , Nitrógeno
7.
Inorg Chem ; 61(49): 19933-19943, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36455134

RESUMEN

Sequestration of toxic oxo-anions (such as 99TcO4- and ClO4-) from wastewater has received constant attention due to the existing serious threat to public health and the sustainability of the environment. In view of the low energy of hydration of TcO4- and ClO4-, cationic metal-organic framework (MOF) materials with the hydrophobic microenvironment are preferred in the selection of sorbents. Herein, a twofold interpenetrated cationic MOF (ZJU-X15) with double-helical chains was constructed by tetrakis[4-(pyridin-4-yl)phenyl]ethene (TPPE) and Cd2+ for the elimination of 99TcO4- and ClO4-. Profiting from hydrophobic channels, ZJU-X15 could remove most of ReO4- (a surrogate for 99TcO4-) and ClO4- in less than 10 and 20 min, respectively. As the result of batch experiments, ZJU-X15 could capture 356 mg of ReO4- and 221 mg of ClO4- per 1 g of sorbent, showcase decent selectivity, and still maintain high removal efficiency for anions after four recycles. Furthermore, the process of anion-exchange was confirmed by ion chromatography, Fourier-transform infrared spectroscopy, scanning electron microscopy combined with an energy-dispersive X-ray spectrometer, and X-ray photoelectron spectroscopy, indicating that target anions successfully entered into the body of ZJU-X15 through anion exchange.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Aniones , Cationes/química , Aguas Residuales , Espectroscopía de Fotoelectrones
8.
Inorg Chem ; 61(6): 2824-2834, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35104133

RESUMEN

The counteranion has a strong influence on the complexation behavior of tridentate phenanthroline carboxamide ligands with actinides and lanthanides, but the thermodynamic and underlying interaction mechanism at the molecular level is still not clear. In this work, a tridentate ligand, N-ethyl-N-tolyl-2-amide-1,10-phenanthroline (Et-Tol-PTA), was synthesized, and the effects of different anions (Cl-, NO3-, and ClO4-) on the complexation behavior of Et-Tol-PTA with typical lanthanides were thoroughly studied by using 1H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectrophotometry, and single-crystal X-ray diffraction. The NMR spectroscopic titration of Lu(III) showed that there were three species (1:1, 2:1, and 3:1 ligand-metal complexes) formed in Cl- solution systems while two species (2:1 and 1:1) were formed in NO3- and ClO4- solution systems. When Et-Tol-PTA was titrated with La(III), two species (2:1 and 1:1) were formed in NO3- systems and only one species (1:1) was formed in Cl- and ClO4- systems. In addition, the stability constant was determined via UV-vis spectroscopic titration, which showed that the complexation strength between Et-Tol-PTA and Eu(III) decreased in the following order: ClO4- > NO3- > Cl-. This indicated that Et-Tol-PTA had the strongest complexation ability with Eu(III) in the ClO4- system. The structures of Et-Tol-PTA complexed with EuCl3, Eu(NO3)3, and Eu(ClO4)3 were further elucidated by single-crystal X-ray diffraction and agreed well with the results of UV-vis titration experiments. The results of this work revealed that the mechanisms of complexation of lanthanides with the asymmetric ligand Et-Tol-PTA were strongly affected by different anionic environments in solution and in the solid state. These findings may lead to the improvement of the separation of trivalent actinides and lanthanides in nuclear waste.

9.
Inorg Chem ; 61(29): 11463-11470, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35833914

RESUMEN

Albeit reported substantial sorbents for elimination of TcO4-, the issue of secondary contamination caused by released counterions (such as NO3-) from the cationic metal-organic framework (MOF) has not come into the sufficient limelight for researchers. Herein, our efforts are dedicated to settle the matter through synthesis of NiCl2 based on the cationic MOF (ZJU-X4). Less harmful chlorides are used as exchangeable anions for replacing hazardous anions. Notably, ZJU-X4 exhibited fast sorption kinetics, high sorption capacity of 395 mg/g, decent selectivity, and excellent reusability in four recycles. The results of ion chromatography revealed that the released chloride ion was equal to sorption of target ions, and pair distribution functions were employed to analyze the changes in ZJU-X4 after sorption of ReO4-, clearly elucidating the anion-exchange mechanism. Furthermore, in the dynamic sorption experiments, ReO4- could be facilely and effectively removed and recovered, showing the value of practical applications. This work indicated that cationic MOF-based metal chloride salts would be a better choice for anionic sorbents.

10.
Inorg Chem ; 61(44): 17911-17923, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36283076

RESUMEN

Two novel asymmetric hard-soft combined ligands, diphenyl(6-(5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methanobenzo-[1,2,4]triazin-3-yl)pyridin-2-yl)phosphine oxide (Ph2-MTP) and butylphenyl(6-(5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methanobenzo-[1,2,4]triazin-3-yl)pyridin-2-yl)phosphine oxide (BuPh-MTP), were designed based on the combination of the nature of phosphoryl and triazinyl groups for the selective extraction of trivalent minor actinides from lanthanides. The synthesis of these two ligands and their solvent extraction and complexation behaviors with Am(III) and typical lanthanides were investigated using UV-vis and time-resolved fluorescence spectrophotometry, 1H/31P NMR spectrometry, single-crystal X-ray diffraction, and DFT calculation methods. Solvent extraction experiments showed that both the ligands had strong extraction ability and high selectivity toward Am(III) over Eu(III) from the highly acidic HNO3 solution. The separation factors (SFAm/Eu) of these two ligands ranged from 17 to 26, with the concentrations of HNO3 increasing from 1.0 to 4.0 M. Slope analysis showed that the 3:1 ligand/metal complex was the prevailing species formed during extraction. The formation of the 3:1 ratio of the species of these two ligands with lanthanides was also identified by UV-vis spectrophotometry and single crystallography methods. The stability constants for the formation of the 1:3 complexes of Ph2-MTP and BuPh-MTP with Nd(III) were determined as 7.06 ± 0.015 and 6.67 ± 0.007, respectively. The geometric structures of the 1:3 complexes were clearly illustrated using the single-crystal X-ray diffraction technique and DFT theoretical calculation. This work provides an effective strategy to design new asymmetric hard-soft mixed actinide extractants by combining two different functional groups in one ligand, and the interaction mechanism between the functional groups and metal ions needs to be further investigated.

11.
Environ Sci Technol ; 56(7): 4404-4412, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286072

RESUMEN

The spent neodymium-iron-boron (NdFeB) magnet is a highly valuable secondary resource of rare earth elements (REEs). Hydrometallurgical processes are widely used in recovering REEs from spent NdFeB magnets, but they will consume large amounts of organic chemicals, leading to severe environmental pollution. This work developed an alternative green route to selectively recover REEs from spent NdFeB permanent magnets using a purely inorganic zinc salt. The Hammett acidity measurement showed that concentrated ZnCl2 solutions could be regarded as a strong Brønsted acid. Concentrated ZnCl2 solutions achieved a high separation factor (>1 × 105) between neodymium and iron through simple dissolution of their corresponding oxide mixture. In the simulated recovery process of spent NdFeB magnets, the Nd2O3 product was successfully recovered with a purity close to 100% after selective leaching by ZnCl2 solution, sulfate double-salt precipitation, and oxalic acid precipitation. The separation performance of the ZnCl2 solution for Nd2O3 and Fe2O3 remained almost unchanged after four cycles. The energy consumption and chemical inputs of this process are about 1/10 and half of the traditional hydrometallurgy process separately. This work provides a promising approach for the green recovery of secondary REE resources.


Asunto(s)
Imanes , Metales de Tierras Raras , Neodimio , Ácido Oxálico , Reciclaje
12.
Chemistry ; 27(18): 5632-5637, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33506531

RESUMEN

As one of most problematic radionuclides, technetium-99, mainly in the form of anionic pertechnetate (TcO4 - ), exhibits high environmental mobility, long half-life, and radioactive hazard. Due to low charge density and high hydrophobicity for this tetrahedral anion, it is extremely difficult to recognize it in water. Seeking efficient and selective recognition method for TcO4 - is still a big challenge. Herein, a new water-stable cationic metal-organic framework (ZJU-X8) was reported, bearing tetraphenylethylene pyrimidine-based aggregation-induced emission (AIE) ligands and attainable silver sites for TcO4 - detection. ZJU-X8 underwent an obvious spectroscopic change from brilliant blue to flavovirens and exhibited splendid selectivity towards TcO4 - . This uncommon fluorescent recognition mechanism was well elucidated by batch sorption experiments and DFT calculations. It was found that only TcO4 - could enter into the body of ZJU-X8 through anion exchange whereas other competing anions were excluded outside. Subsequently, after interaction between TcO4 - and silver ions, the electron polarizations from pyrimidine rings to Ag+ cations significantly lowered the energy level of the π* orbital and thus reduced the π-π* energy gap, resulting in a red-shift in the fluorescent spectra.

13.
Chemistry ; 27(41): 10717-10730, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34002918

RESUMEN

Two new phosphine oxide-functionalized 1,10-phenanthroline ligands, tetradentate 2,9-bis(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-BPPhen, L1 ) and tridentate 2-(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-MPPhen, L2 ), were synthesized and studied comparatively for their coordination with trivalent actinides and lanthanides. The complexation mechanisms of these two ligands toward trivalent f-block elements were thoroughly elucidated by NMR spectroscopy, UV/vis spectrophotometry, fluorescence spectrometry, single-crystal X-ray diffraction, solvent extraction, and theoretical calculation methods. NMR titration results demonstrated that 1 : 1 and 1 : 2 (metal to ligand) lanthanides complexes formed for L1 , whereas 1 : 1, 1 : 2 and 1 : 3 lanthanide complexes formed for L2 in methanol. The formation of these species was validated by fluorescence spectrometry, and the corresponding stability constants for the complexes of NdIII with L1 and L2 were determined by using UV/vis spectrophotometry. Structures of the 10-coordinated 1 : 1-type complexes of EuL1 (NO3 )3 and [EuL2 (NO3 )3 (H2 O)] Et2 O in the solid state were characterized by X-ray crystallography. In solvent-extraction experiments, L1 exhibited extremely strong extraction ability for both AmIII and EuIII , whereas L2 showed nearly no extraction toward AmIII or EuIII due to its high hydrophilicity. Finally, the structures and bonding natures of the complex species formed between AmIII /EuIII and L1 /L2 were analyzed in DFT calculations.

14.
Inorg Chem ; 60(21): 16420-16428, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644066

RESUMEN

Cationic metal-organic framework (MOF) materials are widely used in the anion separation field, but there are few reports of pyrimidyl ligands as building units. In this work, three new cationic MOFs based on pyrimidyl as functional group ligands were synthesized for the removal of radioactive pertechnetate from aqueous solution. The pyrimidyl ligands were designed by incorporating pyrimidyl units into the skeletons of benzene, triphenylamine, and tetraphenylethylene, respectively. Taking advantage of multiple coordination sites of pyrimidyl groups, three cationic MOFs (ZJU-X11, ZJU-X12, and ZJU-X13) with diverse structures were solvothermally synthesized using silver ion as the metal node. Scanning electron microscopy-energy-dispersive spectroscopy mapping demonstrated that these three cationic MOFs could capture ReO4- via anion exchange, but the sorption capabilities were distinctly different. With 95% removal toward ReO4-, ZJU-X11 showed the strongest anion-exchange competence among the three MOFs. According to the results of batch experiments, ZJU-X11 could achieve sorption equilibrium within 10 min, remove 518 mg of ReO4- per 1 g of ZJU-X11, remove most of ReO4- after four recycles, and maintain satisfactory selectivity in the presence of excess competing anions, which is one of the best MOF materials for removing ReO4-/TcO4- among the three cationic MOFs. This work indicates that the pyrimidyl group is a promising multiple site to build versatile cationic MOFs.

15.
Inorg Chem ; 60(4): 2805-2815, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33502197

RESUMEN

In this work, a tetradentate N,O-hybrid 2,9-bis(diphenylphosphine oxide)-1,10-phenanthroline (Ph2-BPPhen) ligand was studied for the coextraction of trivalent f-block elements from nitric acid media. The extraction as well as the complexation behaviors of Ph2-BPPhen with f-block elements were thoroughly investigated using 31P and 1H NMR spectrometry, UV-vis spectrophotometry, single crystal X-ray diffraction, and density functional theoretical (DFT) calculation. Ph2-BPPhen exhibits remarkably extraction ability for both Am(III) and Eu(III) and more than 99.5% of Am(III) and Eu(III) were extracted from 1.0 M HNO3 solution. Slope analysis suggests that both 2:1 and 1:1 ligand/metal complexes were probably formed during the extraction. The 1:1 and 2:1 Ln(III) complexes with Ph2-BPPhen were also identified in CH3OH solution by NMR spectrometry, and the stability constants were determined via UV-vis spectrophotometry. Structures of the 1:1 Eu(Ph2-BPPhen)(NO3)3 and Am(Ph2-BPPhen)(NO3)3 complexes were further elucidated by single X-ray crystallography and DFT calculations. The higher extractability of Ph2-BPPhen toward trivalent Am(III) and Eu(III) compared with the previously reported phenanthroline-derived amide and phosphonate ligands was attributed to the stronger affinity of the -P═O(R)2 group to metal ions. The results from this work indicate that the N,O-hybrid 1,10-phenanthroline derived phosphine oxide ligand can serve as a new and promising candidate for coextraction of trivalent f-block elements in the treatment of nuclear waste.

16.
Inorg Chem ; 60(9): 6463-6471, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33856787

RESUMEN

99Tc is one of the most abundant radiotoxic isotopes in used nuclear fuel with a high fission yield and a long half-life. Effective removal of pertechnetate (TcO4-) from an aqueous solution is important for nuclear waste separation and remediation. Herein, we report a series of facilely obtained benzene-linked guanidiniums that could precipitate TcO4- and its nonradioactive surrogate ReO4- from a high-concentration acidic solution through self-assembly crystallization. The resulting perrhenate and pertechnetate solids exhibit exceptionally low aqueous solubility. The benzene-linked guanidiniums hold one of the highest TcO4- removal capacities (1279 mg g-1) among previously reported materials and possess a removal percentage of 59% for ReO4- in the presence of Cl- over 50 times. The crystallization mechanism was clearly illustrated by the single-crystal structures and density functional theory calculations, indicating that TcO4- is captured through a charge-assisted hydrogen bonding interaction and stabilized by π-π stacking layers. In addition, the removal process is easily recycled and no toxic organic reagents are introduced. This work provides a green approach to preliminarily separate TcO4- from high-level nuclear wastes.

17.
Inorg Chem ; 60(12): 8754-8764, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34077191

RESUMEN

N,O-hybrid diamide ligands with N-heterocyclic skeletons are one of the promising extractants for the selective separation of actinides over lanthanides in a highly acidic HNO3 solution. In this work, three hard-soft donor mixed diamide ligands, pyridine-2,6-diylbis(pyrrolidin-1-ylmethanone) (Pyr-PyDA), 2,2'-bipyridine-6,6'-diylbis(pyr-rolidine-1-ylmethanone) (Pyr-BPyDA), and (1,10-phenanthroline-2,9-diyl)bis(pyrrolidin-1-ylmethanone) (Pyr-DAPhen), were synthesized and used to probe the influence of N-heterocyclic cores on the complexation and extraction behaviors with trivalent lanthanides and actinides. 1H NMR titration experiments demonstrated that 1:1 metal-to-ligand complexes were mainly formed between the three ligands and lanthanides, but 1:2 type complexes were also formed between tridentate Pyr-PyDA and Lu(III). The stability constants (log ß) of these three ligands with two typical lanthanides, Nd(III) and Eu(III), were determined through spectrophotometric titration. It is found that Pyr-DAPhen formed the most stable complexes, while Pyr-PyDA formed the most unstable complexes with lanthanides, which coincided well with the following solvent extraction results. The solid-state structures of 1:1 type complexes of these three ligands with La(III), Nd(III), and Er(III) in nitrate media were identified by a single-crystal X-ray diffraction technique. Nd(III) and Er(III) were 10-coordinated with Pyr-PyDA, Pyr-BPyDA, and Pyr-DAPhen via one ligand molecule and three nitrate ions. La(III), because of its larger ionic radius, was 11-coordinated with Pyr-DAPhen through one ligand molecule, three nitrate ions, and one methanol molecule. Solvent extraction experiments showed that the preorganized phenanthroline-derived Pyr-DAPhen had the best extraction performance for trivalent actinide among the three ligands tested. This work provides some experimental insights into the design of more efficient ligands for trivalent actinide separation by adjusting the N-heterocyclic cores.

18.
Inorg Chem ; 59(23): 17453-17463, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33216540

RESUMEN

Soft-hard-donor-combined ligands are a type of promising extractant for actinide and lanthanide separation. In this work, the effects of counteranions (Cl-, NO3-, and ClO4-) on the extraction and complexation behaviors of a recently reported tetradentate phenanthroline-derived phosphonate (POPhen) ligand toward lanthanides were thoroughly investigated using solvent extraction, NMR titration, UV-vis titration, and single-crystal X-ray diffraction measurements. It is found that C4-POPhen showed excellent extraction and selectivity toward heavy lanthanides [Lu(III)] compared to light lanthanides, particularly with the counterion of ClO4- and at low acidity. NMR titration studies demonstrated that both 1:1 and 1:2 Lu(III)/C4-POPhen complexes were formed in a CD3OD solution with all three counteranions and the 1:2 species was easier to form in a complexation of C4-POPhen with Lu(ClO4)3 under the same conditions. Furthermore, the stability constants of Nd(III) complexation with C4-POPhen in the counteranions of Cl-, NO3-, and ClO4- systems were determined through UV-vis titration, and a much larger value of log ß of complexes was found in the ClO4- system, which was in good agreement with the results of solvent extraction. In addition, the structures of C2-POPhen complexation with Ln(NO3)3/Ln(ClO4)3 in the solid state were clearly unraveled by the single-crystal X-ray diffraction technique. This work demonstrated that the solvent extraction and complexation mechanisms of POPhen ligands with Ln(III) were significantly affected by the counteranions from both the solution and solid-state aspects, which might shed light on the lanthanide/actinide separation.

19.
Environ Sci Technol ; 54(16): 10370-10379, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32673480

RESUMEN

The NdFeB permanent magnet is a critical material in digital electronics and clean energy industry. Traditional recovery processes based on the solvent extraction technique would consume high energy and large amounts of chemicals as well as resulting in abundant secondary organic wastes. In this work, a green process using deep eutectic solvents (DESs) in the selective leaching technology was designed to recover NdFeB permanent magnets. Nine kinds of DESs composed of guanidine were prepared and screened as the leachants. The guanidine hydrochloride-lactic acid (GUC-LAC) combined DES achieved the highest separation factor (>1300) between neodymium and iron through simple dissolution of their corresponding oxide mixture. The mass concentration of Nd dissolved in the GUC-LAC DES could reach 6.7 × 104 ppm. The viscosity of this type of DES at 50 °C was 36 cP, which was comparable to many common organic solvents. In a practical recovery of roasted magnet powders, the Nd2O3 product with 99% purity was facilely obtained with only one dissolution step, followed by a stripping process with oxalic acid. Even after 3 cycles, the GUC-LAC DES kept the same dissolution property and chemical stability. With such superior performances in selective leaching of rare earth elements from transition metals, the GUC-LAC DES is greatly promising in the rare earth element recovery field.


Asunto(s)
Imanes , Metales de Tierras Raras , Hierro , Neodimio , Solventes
20.
Inorg Chem ; 58(7): 4420-4430, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869514

RESUMEN

Recently, phenanthroline-based ligands have received increasing attention due to their excellent separation capabilities for trivalent actinides over lanthanide. In this work, we designed a soft-hard donor combined tetradentate phenanthroline-based extractant, tetraethyl (1,10-phenanthrolin-2,9-diyl)phosphonate (C2-POPhen), for the selective separation of trivalent Am(III) over Ln(III) from HNO3 media. The solvent extraction and complexation behaviors of Am(III) and Ln(III) by C2-POPhen were investigated both experimentally and theoretically. C2-POPhen could selectively extract Am(III) over Eu(III) with an extremely fast extraction kinetics. NMR titration studies suggest that only 1:1 complexes of Ln(III) with C2-POPhen formed in CH3OH in the presence of a significant amount of nitrate, while both 1:1 and 2:1 complexes species could form between C2-POPhen and Ln(III) perchlorate in CH3OH without nitrate ions. The stability constants for the complexation of Am(III) and Ln(III) with C2-POPhen in CH3OH were determined by spectrophotometric titrations and the Am(III) complexes are approximately 1 order of magnitude stronger than those of Ln(III), which is consistent with the extraction results. Theoretical calculations indicate that the Am-N bonds in Am/C2-POPhen complexes possess more covalent characters than the Eu-N bonds in Eu/C2-POPhen complexes, shedding light on the underlying chemical force responsible for the Am/Eu selectivity by C2-POPhen. This work represents the first report utilizing phenanthroline-based phosphonate ligands for selective separation of actinides from highly acidic solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA