Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Crit Rev Food Sci Nutr ; 62(20): 5476-5494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33583246

RESUMEN

In the process of growing, harvesting, and storage, fruits are vulnerable to mechanical damage, microbial infections, and other types of damage, which not only reduce the quality of fruits, increase the risk of fungal infections, in turn greatly affect food safety, but also sharply reduce economic benefits. Hence, it is essential to identify damaged fruits in time. Rapid and nondestructive detection of fruits damage is in great demand. In this paper, the latest research progresses on the detection of fruits damage by nondestructive techniques, including visible/near-infrared spectroscopy, chlorophyll fluorescence techniques, computer vision, multispectral and hyperspectral imaging, structured-illumination reflectance imaging, laser-induced backscattering imaging, optical coherence tomography, nuclear magnetic resonance and imaging, X-ray imaging, electronic nose, thermography, and acoustic methods, are summarized. We briefly introduce the principles of these techniques, summarize their applicability. The challenges and future trends are also proposed to provide beneficial reference for future researches and real-world applications.


Asunto(s)
Inocuidad de los Alimentos , Frutas , Frutas/química , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja Corta/métodos
2.
Crit Rev Food Sci Nutr ; 61(14): 2351-2371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32543218

RESUMEN

In recent years, people pay more and more attention to food quality and safety, which are significantly relating to human health. Food adulteration is a world-wide concerned issue relating to food quality and safety, and it is difficult to be detected. Modern detection techniques (high performance liquid chromatography, gas chromatography-mass spectrometer, etc.) can accurately identify the types and concentrations of adulterants in different food types. However, the characteristics as expensive, low efficient and complex sample preparation and operation limit the use of these techniques. The rapid, nondestructive and accurate detection techniques of food adulteration is of great and urgent demand. This paper introduced the principles, advantages and disadvantages of the nondestructive analysis techniques and reviewed the applications of these techniques in food adulteration screen in recent years. Differences among these techniques, differences on data interpretation and future prospects were also discussed.


Asunto(s)
Contaminación de Alimentos , Calidad de los Alimentos , Cromatografía Líquida de Alta Presión , Análisis de los Alimentos , Contaminación de Alimentos/análisis , Humanos , Espectrometría de Masas
3.
Sensors (Basel) ; 20(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882807

RESUMEN

Radix Astragali is a prized traditional Chinese functional food that is used for both medicine and food purposes, with various benefits such as immunomodulation, anti-tumor, and anti-oxidation. The geographical origin of Radix Astragali has a significant impact on its quality attributes. Determining the geographical origins of Radix Astragali is essential for quality evaluation. Hyperspectral imaging covering the visible/short-wave near-infrared range (Vis-NIR, 380-1030 nm) and near-infrared range (NIR, 874-1734 nm) were applied to identify Radix Astragali from five different geographical origins. Principal component analysis (PCA) was utilized to form score images to achieve preliminary qualitative identification. PCA and convolutional neural network (CNN) were used for feature extraction. Measurement-level fusion and feature-level fusion were performed on the original spectra at different spectral ranges and the corresponding features. Support vector machine (SVM), logistic regression (LR), and CNN models based on full wavelengths, extracted features, and fusion datasets were established with excellent results; all the models obtained an accuracy of over 98% for different datasets. The results illustrate that hyperspectral imaging combined with CNN and fusion strategy could be an effective method for origin identification of Radix Astragali.

4.
Molecules ; 25(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260173

RESUMEN

Sodium pyrosulfite is a browning inhibitor used for the storage of fresh-cut potato slices. Excessive use of sodium pyrosulfite can lead to sulfur dioxide residue, which is harmful for the human body. The sulfur dioxide residue on the surface of fresh-cut potato slices immersed in different concentrations of sodium pyrosulfite solution was classified by near-infrared hyperspectral imaging (NIR-HSI) system and portable near-infrared (NIR) spectrometer. Principal component analysis was used to analyze the object-wise spectra, and support vector machine (SVM) model was established. The classification accuracy of calibration set and prediction set were 98.75% and 95%, respectively. Savitzky-Golay algorithm was used to recognize the important wavelengths, and SVM model was established based on the recognized important wavelengths. The final classification accuracy was slightly less than that based on the full spectra. In addition, the pixel-wise spectra extracted from NIR-HSI system could realize the visualization of different samples, and intuitively reflect the differences among the samples. The results showed that it was feasible to classify the sulfur dioxide residue on the surface of fresh-cut potato slices immersed in different concentration of sodium pyrosulfite solution by NIR spectra. It provided an alternative method for the detection of sulfur dioxide residue on the surface of fresh-cut potato slices.


Asunto(s)
Solanum tuberosum/química , Sulfitos/análisis , Estudios de Factibilidad , Imágenes Hiperespectrales , Análisis de los Mínimos Cuadrados , Análisis de Componente Principal , Espectroscopía Infrarroja Corta , Sulfitos/química , Máquina de Vectores de Soporte
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123889, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340442

RESUMEN

Bakanae disease is a common seed-borne disease of rice. Rapid and accurate detection of bakanae pathogens carried by rice seeds is essential for the health of rice germplasm resources and the safety of rice production. This study aims to propose a general framework for species identification of major bakanae pathogens carried by rice seeds based on hyperspectral imaging and deep transfer learning. Seven varieties of rice seeds and four kinds of bakanae pathogens were analyzed. One-dimensional deep convolution neural networks (DCNNs) were first constructed using complete datasets. They achieved accuracies larger than 96.5% on the testing sets of most datasets, exceeding the conventional SVM and PLS-DA models. Then the developed DCNNs were transferred to detect other complete training sets. Most of the deep transferred models achieved comparable or even better performance than the original DCNNs. Two smaller target training sets were further constructed by randomly selecting spectra from the complete training sets. As the size of the target training sets reduced, the accuracies of all models on the corresponding testing sets also decreased gradually. Visualization analysis were conducted using the t-distribution stochastic neighbor embedding (t-SNE) algorithm and a proposed gradient-weighted activation wavelength (Grad-AW) method. They all showed that deep transfer learning could utilize the representation patterns in the source datasets to improve the target tasks. The overall results indicated that the bakanae pathogens were all identified accurately under our proposed framework. Hyperspectral imaging combined with deep transfer learning provided a new idea for the quality detection of large-scale seeds in modern seed industry.


Asunto(s)
Oryza , Imágenes Hiperespectrales , Espectroscopía Infrarroja Corta , Semillas , Aprendizaje Automático
6.
Plant Phenomics ; 5: 0033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37011279

RESUMEN

[This corrects the article DOI: 10.34133/plantphenomics.0022.].

7.
Plant Phenomics ; 5: 0022, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040509

RESUMEN

Deep learning and computer vision have become emerging tools for diseased plant phenotyping. Most previous studies focused on image-level disease classification. In this paper, pixel-level phenotypic feature (the distribution of spot) was analyzed by deep learning. Primarily, a diseased leaf dataset was collected and the corresponding pixel-level annotation was contributed. A dataset of apple leaves samples was used for training and optimization. Another set of grape and strawberry leaf samples was used as an extra testing dataset. Then, supervised convolutional neural networks were adopted for semantic segmentation. Moreover, the possibility of weakly supervised models for disease spot segmentation was also explored. Grad-CAM combined with ResNet-50 (ResNet-CAM), and that combined with a few-shot pretrained U-Net classifier for weakly supervised leaf spot segmentation (WSLSS), was designed. They were trained using image-level annotations (healthy versus diseased) to reduce the cost of annotation work. Results showed that the supervised DeepLab achieved the best performance (IoU = 0.829) on the apple leaf dataset. The weakly supervised WSLSS achieved an IoU of 0.434. When processing the extra testing dataset, WSLSS realized the best IoU of 0.511, which was even higher than fully supervised DeepLab (IoU = 0.458). Although there was a certain gap in IoU between the supervised models and weakly supervised ones, WSLSS showed stronger generalization ability than supervised models when processing the disease types not involved in the training procedure. Furthermore, the contributed dataset in this paper could help researchers get a quick start on designing their new segmentation methods in future studies.

8.
Front Plant Sci ; 14: 1135718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021317

RESUMEN

Verticillium wilt (VW) is often referred to as the cancer of cotton and it has a detrimental effect on cotton yield and quality. Since the root system is the first to be infested, it is feasible to detect VW by root analysis in the early stages of the disease. In recent years, with the update of computing equipment and the emergence of large-scale high-quality data sets, deep learning has achieved remarkable results in computer vision tasks. However, in some specific areas, such as cotton root MRI image task processing, it will bring some challenges. For example, the data imbalance problem (there is a serious imbalance between the cotton root and the background in the segmentation task) makes it difficult for existing algorithms to segment the target. In this paper, we proposed two new methods to solve these problems. The effectiveness of the algorithms was verified by experimental results. The results showed that the new segmentation model improved the Dice and mIoU by 46% and 44% compared with the original model. And this model could segment MRI images of rapeseed root cross-sections well with good robustness and scalability. The new classification model improved the accuracy by 34.9% over the original model. The recall score and F1 score increased by 59% and 42%, respectively. The results of this paper indicate that MRI and deep learning have the potential for non-destructive early detection of VW diseases in cotton.

9.
J Adv Res ; 35: 215-230, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35003802

RESUMEN

Linking phenotypes and genotypes to identify genetic architectures that regulate important traits is crucial for plant breeding and the development of plant genomics. In recent years, genome-wide association studies (GWASs) have been applied extensively to interpret relationships between genes and traits. Successful GWAS application requires comprehensive genomic and phenotypic data from large populations. Although multiple high-throughput DNA sequencing approaches are available for the generation of genomics data, the capacity to generate high-quality phenotypic data is lagging far behind. Traditional methods for plant phenotyping mostly rely on manual measurements, which are laborious, inaccurate, and time-consuming, greatly impairing the acquisition of phenotypic data from large populations. In contrast, high-throughput phenotyping has unique advantages, facilitating rapid, non-destructive, and high-throughput detection, and, in turn, addressing the shortcomings of traditional methods. Aim of Review: This review summarizes the current status with regard to the integration of high-throughput phenotyping and GWAS in plants, in addition to discussing the inherent challenges and future prospects. Key Scientific Concepts of Review: High-throughput phenotyping, which facilitates non-contact and dynamic measurements, has the potential to offer high-quality trait data for GWAS and, in turn, to enhance the unraveling of genetic structures of complex plant traits. In conclusion, high-throughput phenotyping integration with GWAS could facilitate the revealing of coding information in plant genomes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genoma de Planta , Genotipo , Fenotipo
10.
Plant Phenomics ; 2022: 9813841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158530

RESUMEN

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.

11.
Front Plant Sci ; 13: 1080745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36643292

RESUMEN

Leaf nitrogen concentration (LNC) is a critical indicator of crop nutrient status. In this study, the feasibility of using visible and near-infrared spectroscopy combined with deep learning to estimate LNC in cotton leaves was explored. The samples were collected from cotton's whole growth cycle, and the spectra were from different measurement environments. The random frog (RF), weighted partial least squares regression (WPLS), and saliency map were used for characteristic wavelength selection. Qualitative models (partial least squares discriminant analysis (PLS-DA), support vector machine for classification (SVC), convolutional neural network classification (CNNC) and quantitative models (partial least squares regression (PLSR), support vector machine for regression (SVR), convolutional neural network regression (CNNR)) were established based on the full spectra and characteristic wavelengths. Satisfactory results were obtained by models based on CNN. The classification accuracy of leaves in three different LNC ranges was up to 83.34%, and the root mean square error of prediction (RMSEP) of quantitative prediction models of cotton leaves was as low as 3.36. In addition, the identification of cotton leaves based on the predicted LNC also achieved good results. These results indicated that the nitrogen content of cotton leaves could be effectively detected by deep learning and visible and near-infrared spectroscopy, which has great potential for real-world application.

12.
Plant Phenomics ; 2022: 9851096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059603

RESUMEN

Herbicides and heavy metals are hazardous substances of environmental pollution, resulting in plant stress and harming humans and animals. Identification of stress types can help trace stress sources, manage plant growth, and improve stress-resistant breeding. In this research, hyperspectral imaging (HSI) and chlorophyll fluorescence imaging (Chl-FI) were adopted to identify the rice plants under two types of herbicide stresses (butachlor (DCA) and quinclorac (ELK)) and two types of heavy metal stresses (cadmium (Cd) and copper (Cu)). Visible/near-infrared spectra of leaves (L-VIS/NIR) and stems (S-VIS/NIR) extracted from HSI and chlorophyll fluorescence kinetic curves of leaves (L-Chl-FKC) and stems (S-Chl-FKC) extracted from Chl-FI were fused to establish the models to detect the stress of the hazardous substances. Novel end-to-end deep fusion models were proposed for low-level, middle-level, and high-level information fusion to improve identification accuracy. Results showed that the high-level fusion-based convolutional neural network (CNN) models reached the highest detection accuracy (97.7%), outperforming the models using a single data source (<94.7%). Furthermore, the proposed end-to-end deep fusion models required a much simpler training procedure than the conventional two-stage deep learning fusion. This research provided an efficient alternative for plant stress phenotyping, including identifying plant stresses caused by hazardous substances of environmental pollution.

13.
Foods ; 9(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963170

RESUMEN

Color index and water content are important indicators for evaluating the quality of fresh-cut potato tuber slices. In this study, hyperspectral imaging combined with multivariate analysis was used to detect the color parameters (L*, a*, b*, Browning index (BI), L*/b*) and water content of fresh-cut potato tuber slices. The successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to extract characteristic wavelengths, partial least squares (PLS) and least squares support vector machine (LS-SVM) were utilized to establish regression models. For color prediction, R2c, R2p and RPD of all the LSSVM models established for the five color indicators L*, a*, b*, BI, L*/b* were exceeding 0.90, 0.84 and 2.1, respectively. For water content prediction, R2c, R2p, and RPD of the LSSVM models were over 0.80, 0.77 and 1.9, respectively. LS-SVM model based on full spectra was used to reappear the spatial distribution of color and water content in fresh-cut potato tuber slices by pseudo-color imaging since it performed best in most cases. The results illustrated that hyperspectral imaging could be an effective method for color and water content prediction, which could provide solid theoretical basis for subsequent grading and processing of fresh-cut potato tuber slices.

14.
RSC Adv ; 10(20): 11707-11715, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35496579

RESUMEN

Common maize seeds and silage maize seeds are similar in appearance and are difficult to identify with the naked eye. Four varieties of common maize seeds and four varieties of silage maize seeds were identified by near-infrared hyperspectral imaging (NIR-HSI) combined with chemometrics. The pixel-wise principal component analysis was used to distinguish the differences among different varieties of maize seeds. The object-wise spectra of each single seed sample were extracted to build classification models. Support vector machine (SVM) and radial basis function neural network (RBFNN) classification models were established using two different classification strategies. First, the maize seeds were directly classified into eight varieties with the prediction accuracy of the SVM model and RBFNN model over 86%. Second, the seeds of silage maize and common maize were firstly classified with the classification accuracy over 88%, then the seeds were classified into four varieties, respectively. The classification accuracy of silage maize seeds was over 98%, and the classification accuracy of common maize seeds was over 97%. The results showed that the varieties of common maize seeds and silage maize seeds could be classified by NIR-HSI combined with chemometrics, which provided an effective means to ensure the purity of maize seeds, especially to isolate common seeds and silage seeds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA