Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(18): e2208238, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36734211

RESUMEN

The acid-base properties of supports have an enormous impact on catalytic reactions to regulate the selectivity and activity of supported catalysts. Herein, a train of Pd-X-UiO-66 (X = NO2 , NH2 , and CH3 ) catalysts with different acidity/alkalinity functional groups and encapsulated Pd(II) species is first developed, whose activities in dimethyl carbonate (DMC) catalysis are then investigated in details. Thereinto, the Pd-NO2 -UiO-66 catalyst with acidity functionalization exhibits the best catalytic behavior: the DMC selectivity stemmed from methyl nitrite (MN) is up to 68%, the conversion of CO is 73.4%. The obtained experimental results demonstrate that the NO2 group not only affected the interaction between X-UiO-66 and Pd(II) active sites but also play an indispensable role in the adsorption and activation of MN and CO, which remarkably promote the formation of the COOCH3 * intermediate and DMC product.

2.
Opt Express ; 31(22): 37019-37029, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017839

RESUMEN

We have proposed and demonstrated a weak acoustic signal detection technology based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Non-contact acoustic signals transmitting through air gap between the sound source and the receiver are difficult to detect due to fast attenuation. In order to improve the detection ability of non-contact weak acoustic signals, we demonstrate that multi-mode fiber (MMF) is a better solution than single-mode fiber (SMF) benefiting from its larger core and higher Rayleigh backscattering (RBS) capture coefficient. The frequency signal-to-noise ratio (SNR) has been enhanced by 9.26 dB. Then, with the help of 3D printing technology, elastomers have been designed to further enhance the detection ability due to the high-sensitive response to acoustic signals. Compared with the previous reported "I" type elastomer, the location and frequency SNR enhancement caused by our new proposed "n" type elastomer are 8.39 dB and 11.02 dB in SMF based system. The values are further improved to 10.51 dB and 13.38 dB in MMF and "n" type elastomer integrated system. And a phase-pressure sensitivity of -94.62 dB re rad/µPa has been achieved at 2.5 kHz. This non-contact weak acoustic signal detection technique has great application potential in the quasi-distributed partial discharge (PD) detection of smart grid.

3.
Proc Natl Acad Sci U S A ; 117(29): 17204-17210, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32601207

RESUMEN

Pigs are considered as important hosts or "mixing vessels" for the generation of pandemic influenza viruses. Systematic surveillance of influenza viruses in pigs is essential for early warning and preparedness for the next potential pandemic. Here, we report on an influenza virus surveillance of pigs from 2011 to 2018 in China, and identify a recently emerged genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 virus, which bears 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes and has been predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses bind to human-type receptors, produce much higher progeny virus in human airway epithelial cells, and show efficient infectivity and aerosol transmission in ferrets. Moreover, low antigenic cross-reactivity of human influenza vaccine strains with G4 reassortant EA H1N1 virus indicates that preexisting population immunity does not provide protection against G4 viruses. Further serological surveillance among occupational exposure population showed that 10.4% (35/338) of swine workers were positive for G4 EA H1N1 virus, especially for participants 18 y to 35 y old, who had 20.5% (9/44) seropositive rates, indicating that the predominant G4 EA H1N1 virus has acquired increased human infectivity. Such infectivity greatly enhances the opportunity for virus adaptation in humans and raises concerns for the possible generation of pandemic viruses.


Asunto(s)
Genes Virales , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Animales , China , Reacciones Cruzadas , Células Epiteliales/virología , Variación Genética , Genotipo , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Gripe Humana/inmunología , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/transmisión , Pandemias , Filogenia , Prevalencia , Virus Reordenados/genética , Estudios Seroepidemiológicos , Porcinos
4.
Inorg Chem ; 61(16): 6083-6093, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35404597

RESUMEN

Selective removal of carbonyl sulfide (COS) and hydrogen sulfide (H2S) is the key step for natural gas desulfurization due to the highly toxic and corrosive features of these gaseous sulfides, and efficient and stable desulfurizers are urgently needed in the industry. Herein, we report a class of nitrogen-functionalized, hierarchically lamellar carbon frameworks (N-HLCF-xs), which are obtained from the structural transformation of Zn zeolitic imidazolate frameworks via controllable carbonization. The N-HLCF-xs possess the desirable characteristics of large Brunauer-Emmett-Teller surface areas (645-923 m2/g), combined primary three-dimensional microporosity and secondary two-dimensional lamellar microstructure, and high density of nitrogen base sites with enhanced pyridine ratio (17.52 wt %, 59.91%). The anchored nitrogen base sites in N-HLCF-xs show improved accessibility, which boosts their interaction with acidic COS and H2S. As expected, N-HLCF-xs can be employed as multifunctional and efficient desulfurizers for selective removal of COS and H2S from natural gas. COS was first transformed into H2S via catalytic hydrolysis, and the produced H2S was then captured and separated and catalyzed oxidation into elemental sulfur. The above continuous processes can be achieved with solo N-HLCF-xs, giving extremely high efficiencies and reusability. Their integrated desulfurization performance was better than many desulfurizers used in the area, such as activated carbon, ß zeolite, MIL-101(Fe), K2CO3/γ-Al2O3, and FeOx/TiO2.

5.
J Cell Mol Med ; 25(9): 4173-4182, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33793048

RESUMEN

14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3-binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.


Asunto(s)
Proteínas 14-3-3/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata , Transducción de Señal , Virosis/inmunología , Virus/inmunología , Proteínas 14-3-3/inmunología , Animales , Humanos , Virosis/metabolismo , Virosis/virología
6.
Small ; 17(46): e2104939, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34668315

RESUMEN

Efficient catalytic elimination of hydrogen sulfide (H2 S) with high activity and durability in nature gas and blast-furnace gas is very critical for both fundamental catalytic research and applied environmental chemistry. Herein, atomically dispersed Co atom catalysts with Co-N4 sites that can transform H2 S into S with conversion rate of ≈100% are designed and prepared. The representative 4Co-N/NC achieves a sulfur yield of nearly 100% and TOF(Co) of 869 h-1 at 180 °C. Importantly, remarkable long-term durability is achieved as well, with no obvious loss of catalytic activity in the run of 460 h, outperforming most of the reported catalysts. The short bond length and strong cooperation of Co-N are beneficial to improve the structural stability of the Co-N4 centers, and significantly enhanced resistance of water and sulfation over single-atom Co-catalyst. The present mechanism involves the stepwise hydrogen transfer process via the adsorbed *HOO and *HS intermediates.

7.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32759320

RESUMEN

Claudins (CLDN) are a family of proteins that represent the most important components of tight junctions, where they establish the paracellular barrier that controls the flow of molecules in the intercellular space between epithelial cells. Several types of viruses make full use of CLDN to facilitate entry into cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry. In this study, we found that CLDN4 functions as an anti-PRRSV factor by blocking its absorption during the early stages of infection. The small extracellular loop (ECL2) of CLDN4 restricted the viral particles outside cells by binding to GP3. A novel function of GP3-mediated regulation of CLDN4 transcription was suggested. CLDN4 can be decreased through downregulating the level of CLDN4 transcription by ubiquitinating the transcription factor, SP1. The mechanism by which highly pathogenic PRRSV infects the epithelium was proposed. Importantly, ECL2 was found to block PRRSV absorption and infection and neutralize the virus. A more in-depth understanding of PRRSV infection is described, and novel therapeutic antiviral strategies are discussed.IMPORTANCE In the present study, the role of CLDN4 in PRRSV infection was studied. The results showed that CLDN4 blocked absorption into cells and restricted extracellular viral particles via the interaction between the CLDN4 small extracellular loop, ECL2, and the viral surface protein GP3. GP3 was found to downregulate CLDN4 through ubiquitination of the transcription factor SP1 to facilitate viral entry. The mechanism by which highly pathogenic PRRSV infects the epithelium is suggested. A novel function of GP3 in regulating gene transcription was discovered. Moreover, ECL2 could block PRRSV absorption and infection, as well as neutralizing the virus in the supernatant, which may lead to the development of novel therapeutic antiviral strategies.


Asunto(s)
Claudina-4/biosíntesis , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Chlorocebus aethiops , Claudina-4/genética , Células HEK293 , Humanos , Síndrome Respiratorio y de la Reproducción Porcina/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Estructura Secundaria de Proteína , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Porcinos , Transcripción Genética , Ubiquitinación , Células Vero , Proteínas Estructurales Virales/genética
8.
Opt Express ; 29(10): 15631-15640, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985260

RESUMEN

An all-fiber integrated photodetector is proposed and demonstrated by assembling a graphene/palladium diselenide (PdSe2) Van der Waals heterostructure onto the endface of a standard optical fiber. A gold film is covered on the heterostructure working as an electrode and a mirror, which reflects back the unabsorbed residual light for further reusage. Owing to the low bandgap of PdSe2, the all-fiber photodetector shows a broadband photoresponse from 650 to 1550 nm with a high photoresponsivity of 6.68×104 AW-1, enabling a low light detection of 42.5 pW. And the fastest temporal response is about 660 µs. Taking advantage of heterostructures, the photodetector can work in self-powered mode with the on/off ratio about 82. These findings provide new strategies for integrating two-dimensional materials into optical fibers to realize integrated all-fiber devices with multi-function applications.

9.
J Opt Soc Am A Opt Image Sci Vis ; 38(8): 1232-1236, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613318

RESUMEN

Here, we investigate the photonic spin Hall effect in twisted bilayer graphene. The optical conductivities for several rotation angles of twisted bilayer graphene are calculated by first principles, based on which a theoretical framework is established to describe the light-matter interaction. To enhance the photonic spin Hall effect, twisted bilayer graphene is placed on a BK7 glass substrate and a Gaussian beam is launched near the Brewster angle. The spin splitting as well as Goos-Hänchen shifts are investigated, which are associated, respectively, with the imaginary and real parts of the surface conductivities of the twisted bilayer graphene. These findings provide a deeper understanding of the photonic spin Hall effect in two-dimensional materials and have potential application in characterizing bilayer graphene.

10.
Small ; 16(45): e2005111, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33078581

RESUMEN

Combining the features of host templates and guest species is an efficient strategy to optimize the photo/electrocatalytic performance. Herein, novel host-guest thin-film electrocatalysts are designed and developed with Pt doped carbon (Pt/C) confined into porphyrin-based metal-organic frameworks (MOFs). Porous MOF PCN-222 and PCN-221 thin films are used as the host templates and fabricated using vapor-assisted deposition method, and then the guest Pt/C quantum dots are encapsulated into the MOFs by loading the glucose mixed H2 PtCl6 and heating at 200 °C. Thanks to the confinement effect of MOF pores, the homogenous and ultrafine Pt/C nanowires (Pt/CNWs) and nanodots (Pt/CNDs) are confined in nanochannels of PCN-222 and nanocages of PCN-221 (Pt/CNW@PCN-222 and Pt/CND@PCN-221), respectively. The electrocatalytic study shows that the host-guest thin films have highly-efficient electrocatalytic hydrogen evolution performance under light irradiation. Furthermore, the time-resolved photoluminescent results reveal that Pt/CNW@PCN-222 has a faster charge transfer (441 ps) from PCN-222 to Pt/CNWs comparing to that (557 ps) of Pt/CND@PCN-221, indicating the guests with different shapes play an important role in the electrocatalytic performance. This work serves to present both the outstanding level of control in the precise synthesis and high potential for nanocomposite thin films in photo-electrocatalytic application.

11.
Small ; 16(42): e2003904, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32996272

RESUMEN

Iron-based catalysts have been widely studied for the oxidation of H2 S into elemental S. However, the prevention of iron sites from deactivation remains a big challenge. Herein, a facile copolymerization strategy is proposed for the construction of isolated Fe sites confined in polymeric carbon nitride (CN) (Fe-CNNχ). The as-prepared Fe-CNNχ catalysts possess unique 2D structure as well as electronic property, resulting in enlarged exposure of active sites and enhancement of redox performance. Combining systematic characterizations with density functional theory calculation, it is disclosed that the isolated Fe atoms prefer to occupy four-coordinate doping configurations (Fe-N4 ). Such Fe-N4 centers favor the adsorption and activation of O2 and H2 S. As a consequence, Fe-CNNχ exhibit excellent catalytic activity for the catalytic oxidation of H2 S to S. More importantly, the Fe-CNNχ catalysts are resistant to water and sulfur poisoning, exhibiting outstanding catalytic stability (over 270 h of continuous operation), better than most of the reported catalysts.

12.
Vet Res ; 51(1): 104, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811532

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is one of the most severe swine diseases that affects almost all swine-breeding countries. Nonstructural protein 2 (NSP2) is one of the most important viral proteins in the PRRSV life cycle. Our previous study showed that PRRSV NSP2 could induce the formation of aggresomes. In this study we explored the effects of aggresome formation on cells and found that NSP2 could induce autophagy, which depended on aggresome formation to activate aggrephagy. The transmembrane and tail domains of NSP2 contributed to aggrephagy and the cellular protein 14-3-3ε played an important role in NSP2-induced autophagy by binding the tail domain of NSP2. These findings provide information on the function of the C-terminal domain of NSP2, which will help uncover the function of NSP2 during PRRSV infection.


Asunto(s)
Proteínas 14-3-3/metabolismo , Macroautofagia/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Animales , Síndrome Respiratorio y de la Reproducción Porcina/microbiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Dominios Proteicos , Sus scrofa , Porcinos
13.
Vet Res ; 50(1): 16, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819256

RESUMEN

The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) emerged in 2006 in China and caused great economic losses for the swine industry because of the lack of an effective vaccine. 14-3-3 proteins are generating significant interest as potential drug targets by allowing the targeting of specific pathways to elicit therapeutic effects in human diseases. In a previous study, 14-3-3s were identified to interact with non-structural protein 2 (NSP2) of PRRSV. In the present study, the specific subtype 14-3-3ε was confirmed to interact with NSP2 and play a role in the replication of the HP-PRRSV TA-12 strain. Knockdown of 14-3-3ε in Marc-145 cells and porcine alveolar macrophages (PAMs) caused a significant decrease in TA-12 replication, while stable overexpression of 14-3-3ε caused a significant increase in the replication of TA-12 and low pathogenic PRRSV (LP-PRRSV) CH-1R. The 14-3-3 inhibitor difopein also decreased TA-12 and CH-1R replication in Marc-145 cells and PAMs. These findings are consistent with 14-3-3ε acting as a proviral factor and suggest that 14-3-3ε siRNA and difopein are therapeutic candidates against PRRSV infection.


Asunto(s)
Proteínas 14-3-3/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas 14-3-3/fisiología , Animales , Antivirales/uso terapéutico , Western Blotting , Técnicas de Silenciamiento del Gen/veterinaria , Microscopía Confocal , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Proteínas/uso terapéutico , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos , Proteínas no Estructurales Virales/fisiología , Replicación Viral
14.
Arch Virol ; 163(2): 411-418, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29098394

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes great economic losses to the swine industry worldwide. Typically, an N protein-coated indirect enzyme-linked immunosorbent assay (N-coated iELISA) is used to detect PRRSV antibodies. Non-structural protein (NSP) 4 is essential to the PRRSV life cycle and contains B-cell epitopes. Yet, no specific antibody against NSP4 has been detected in clinical samples. In this study, we developed an NSP4-coated iELISA and compared its effectiveness with the N-coated iELISA. The NSP4-coated iELISA was developed with a cut-off value of 0.406 at an optical density of 450 nm by testing a panel of 70 PRRSV positive and 80 PRRSV negative pig serum samples, which generated a specificity and sensitivity of 100%. Agreement between the NSP4-coated and N-coated iELISAs was 92.2%. Interestingly, 50 serum samples, mostly from pigs vaccinated with the HP-PRRSV live strain, tested positive for PRRSV antibodies with the NSP4-coated iELISA, but were negative with the N-coated iELISA. These results were further confirmed by western blot analysis and another iELISA based on the N-terminus of NSP2 (NSP2-1-coated iELISA). The agreement between the results of western blot analysis with the NSP4-coated and NSP2-1-coated iELISA analyses were 92% and 96.1%, respectively, showing that the developed NSP4-coated iELISA is a useful tool to discriminate a false negative from a true negative response to the HP-PRRSV vaccine.


Asunto(s)
Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Síndrome Respiratorio y de la Reproducción Porcina/diagnóstico , Proteínas no Estructurales Virales/inmunología , Animales , Western Blotting , Epítopos de Linfocito B/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Sensibilidad y Especificidad , Pruebas Serológicas , Porcinos , Proteínas no Estructurales Virales/genética
15.
Phys Chem Chem Phys ; 19(45): 30418-30428, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29135006

RESUMEN

A novel non-stoichiometric YxInO3+δ (YIO-x, 0.8 ≤ x ≤ 1.04) perovskite catalyst with a large number of oxygen vacancies and high specific surface area was synthesized using glycine self-propagating gel combustion. It was found that low levels of non-stoichiometry in the A site of YxInO3+δ effectively increased the amount of oxygen desorption by 39-42% when compared to the original (YIO-1) due to Y-deficiency and oxygen vacancies. Further investigations showed that the non-stoichiometry also brings a significant change to the Lewis acid sites on the surface of the sample, which confirmed to be a great promoter for the catalytic combustion of methane. In addition, the catalytic performance increased with the increasing intensity of acid sites. After 50 h of the stability test, the catalysts maintained high activity, indicating their good catalytic stability.

16.
J Proteome Res ; 15(5): 1388-401, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-26709850

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry worldwide and hence global food security, exacerbated by a newly emerged highly pathogenic (HP-PRRSV) strain from China. PRRSV nonstructural protein 2 (nsp2) is a multifunctional polypeptide with strain-dependent influences on pathogenicity. A number of discrete functional regions have been identified on the protein. Quantitative label free proteomics was used to identify cellular binding partners of nsp2 expressed by HP-PRRSV. This allowed the identification of potential cellular interacting partners and the discrimination of nonspecific interactions. The interactome data were further investigated and validated using biological replicates and also compared with nsp2 from a low pathogenic (LP) strain of PRRSV. Validation included both forward and reverse pulldowns and confocal microscopy. The data indicated that nsp2 interacted with a number of cellular proteins including 14-3-3, CD2AP, and other components of cellular aggresomes. The hyper-variable region of nsp2 protein was identified as a binding platform for association with 14-3-3 proteins.


Asunto(s)
Proteínas 14-3-3/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/química , Proteínas no Estructurales Virales/metabolismo , Animales , Sitios de Unión , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Mapeo de Interacción de Proteínas , Porcinos
17.
J Gen Virol ; 97(10): 2684-2690, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27473862

RESUMEN

There have been many outbreaks of hydropericardium syndrome (HPS), which is characterized by pericardial effusion and hepatitis, in Chinese chicken farms since June 2015. HPS was mainly found in miscellaneous meat-type chickens, Ma chickens, layer chicks and Three-yellow chickens, while it was occasionally found in white broilers. To determine the specific causative pathogen and pathogenicity of HPS in chickens, we collected 25 suspected cases and performed clinical pathology and aetiology analyses. The results showed that the 25 cases exhibited multifocal hepatitis with intra-nuclear inclusion bodies and 70 nm-latticed viral particles in the cell nuclei. All samples were positive for fowl adenovirus (FAdV), and sequencing results showed that the hexon gene shared the highest nucleotide similarities with the hexon gene of group 1 serotype 4 (FAdV-4). FAdV-4 was highly pathogenic to embryos and specific pathogen-free chickens, causing 100 and 70 % mortality rates, respectively. Thus, FAdV-4 is associated with HPS outbreaks in China.


Asunto(s)
Infecciones por Adenoviridae/veterinaria , Aviadenovirus/aislamiento & purificación , Derrame Pericárdico/veterinaria , Enfermedades de las Aves de Corral/virología , Infecciones por Adenoviridae/epidemiología , Infecciones por Adenoviridae/virología , Animales , Aviadenovirus/clasificación , Aviadenovirus/genética , Aviadenovirus/fisiología , Pollos , China/epidemiología , Brotes de Enfermedades , Derrame Pericárdico/epidemiología , Derrame Pericárdico/virología , Filogenia , Enfermedades de las Aves de Corral/epidemiología
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(9): 3062-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30085614

RESUMEN

La-Co-O mixed oxides (LCO) were prepared by co-precipitation method with the presence of polyethylene glycol (PEG) as dispersant. The influence of adding different molecular weight of PEG (0, 2 000, 6 000, 20 000 g·mol-1) on the physicochemical and catalytic properties of La-Co-O mixed oxides for total oxidation of benzene was investigated. The samples were characterized by means of N2 physical adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature-programmed reduction by H2 (H2-TPR), temperature-programmed desorption of O2 (O2-TPD), and X-ray photoelectron spectroscopy (XPS). The order of catalytic activity was found to be LCO-PEG6000>LCO>LCO-PG20000>LCO-PG2000. Particularly, LCO-PEG6000 exhibited benzene conversion of 99% at temperature as low as 383 ℃, which was 126 ℃ lower than that of LCO. The characterization result reveals that all samples had a BET surface area of about 9~10 m2·g-1. The XRD result shows that on all samples LaCoO3 perovskite was mainly formed together with a small amount of La2O3 and Co3O4. The addition of PEG was favorable for the formation of LaCoO3 perovskite. Particularly, the addition of PEG-6000 effectively suppressed the agglomeration of LaCoO3 perovskite, giving rise to small and uniform particles as observed by SEM. Moreover, the results of H2-TPR and O2-TPD indicate that the obtained La-Co-O mixed oxides showed higher reducibility and lattice oxygen mobility, and the Co 2p XPS analysis suggests that more surface Co3+ active species were presented by the addition of PEG-6000. These properties are thought to contribute to the high activity in benzene total oxidation.

19.
Protein Expr Purif ; 106: 18-24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25448826

RESUMEN

In the present study, we designed and constructed a chimeric multi-epitope gene of ALV-J to develop a potential multi-epitope vaccine using a reverse vaccinology approach. The chimeric gene includes 4 multi-epitope concentrated fragments (Gag (278-376aa), Pol (784-855aa), Env (Gp85:145-156aa and Gp37:412-538aa) screened from major structural proteins of ALV-J using epitope prediction software. The recombinant chimeric multi-epitope protein (rCMEPX) encoded by the cloned chimeric gene was successfully expressed using an Escherichia coli expression system. The rCMEPX was induced optimally at 37°C for 4.0 h with 0.5mM IPTG. The identity and purity of the expressed rCMEPX was analyzed on a SDS-PAGE. The specific recognition of the purified rCMEPX by the chicken anti-ALV-J serum on a western analysis demonstrated a good immunoreactivity of the expressed rCMEPX, which indicates that the construction and expression of the multi-epitope based chimeric gene for ALV-J vaccine development is successful. The antigenicity and reactionogenicity of the rCMEPX were evaluated by western blot and indirect ELISA. Our results showed good reactionogenicity, specificity, and sensitivity for the expressed rCMEPX, suggesting that it may be a promising vaccine candidate against ALV-J infections.


Asunto(s)
Virus de la Leucosis Aviar/inmunología , Epítopos/genética , Técnicas Genéticas , Proteínas Recombinantes/inmunología , Vacunas Virales/inmunología , Animales , Pollos , Expresión Génica , Proteínas Recombinantes/aislamiento & purificación , Sensibilidad y Especificidad
20.
Vet Res ; 46: 142, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26715184

RESUMEN

Transplacental infection plays a critical role in the reproductive failure induced by porcine reproductive and respiratory syndrome virus (PRRSV), yet exposure of sows and gilts to classical PRRSV generally leads to reproductive failure after 85 days of gestation. We report, for the first time, that the susceptibility of fetuses to highly pathogenic PRRSV (HP-PRRSV) is similar at 60 days and 90 days of gestation. This difference from classical PRRSV may contribute to its high pathogenicity. A field study of the HP-PRRSV vaccine in pregnant sows at mid-gestation should be considered.


Asunto(s)
Intercambio Materno-Fetal , Síndrome Respiratorio y de la Reproducción Porcina/transmisión , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Complicaciones Infecciosas del Embarazo/veterinaria , Animales , Femenino , Feto/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA