Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant J ; 112(3): 812-829, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36129373

RESUMEN

Jute (Corchorus sp.) is the most important bast fiber crop worldwide; however, the mechanisms underlying domestication and improvement remain largely unknown. We performed multi-omics analysis by integrating de novo sequencing, resequencing, and transcriptomic and epigenetic sequencing to clarify the domestication and improvement of dark jute Corchorus olitorius. We demonstrated that dark jute underwent early domestication and a relatively moderate genetic bottleneck during improvement breeding. A genome-wide association study of 11 important agronomic traits identified abundant candidate loci. We characterized the selective sweeps in the two breeding stages of jute, prominently, soil salinity differences played an important role in environmental adaptation during domestication, and the strongly selected genes for improvement had an increased frequency of favorable haplotypes. Furthermore, we speculated that an encoding auxin/indole-3-acetic acid protein COS07g_00652 could enhance the flexibility and strength of the stem to improve fiber yield. Our study not only provides valuable genetic resources for future fiber breeding in jute, but also is of great significance for reviewing the genetic basis of early crop breeding.


Asunto(s)
Corchorus , Corchorus/genética , Corchorus/metabolismo , Domesticación , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Análisis de Secuencia de ADN
2.
Mol Breed ; 41(7): 44, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37309384

RESUMEN

Rice (Oryza sativa L.) is a saline-alkali-sensitive crop. Saline-alkali environments can seriously affect the growth, development, and yield of rice. The mechanisms of salt tolerance and alkali tolerance in rice are different; thus, it is very important to study and explore the alkali-tolerant gene loci to improve the saline-alkali tolerance of rice varieties. In this study, the japonica rice varieties Dongnong 425 (DN425) and Changbai 10 (CB10) and a hybridized recombinant inbred line (RIL) population were used as materials to be irrigated with Na2CO3 solution under field test conditions. A resistant pool (R-pool) and a sensitive pool (S-pool) were constructed by selecting the lines with extremely high and extremely low 1000-grain weight (TGW), respectively, from the RIL population under alkali treatment. Four candidate TGW regions on chromosomes (Chr.) 2 and 3 were associated using the bulked segregant analysis (BSA) strategy assisted by next-generation sequencing (NGS) technology (NGS-assisted BSA). Using the linkage analysis, QTL-qATGW2-2 in the candidate region was mapped within a range of 116 Kb between the SSR marker RM13592 and the Indel marker Indel3 of Chr. 2, which contained 18 predictive genes. The BSA sequencing results showed that Os02g39884 contained a nonsynonymous substitution mutation SNP (nsSNP), leading to the transformation of a residue from arginine (cGg) to glutamine (cAg); thus, Os02g39884 was inferred to be the candidate gene of qATGW2-2. The results of the qRT-PCR analysis also confirmed this. This paper provides important information for the rapid and accurate identification of the alkali-tolerant gene loci in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01228-x.

3.
BMC Genomics ; 21(1): 406, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546133

RESUMEN

BACKGROUND: Jute (Corchorus spp.), belonging to the Malvaceae family, is an important natural fiber crop, second only to cotton, and a multipurpose economic crop. Corchorus capsularis L. is one of the only two commercially cultivated species of jute. Gene expression is spatiotemporal and is influenced by many factors. Therefore, to understand the molecular mechanisms of tissue development, it is necessary to study tissue-specific gene expression and regulation. We used weighted gene coexpression network analysis, to predict the functional roles of gene coexpression modules and individual genes, including those underlying the development of different tissue types. Although several transcriptome studies have been conducted on C. capsularis, there have not yet been any systematic and comprehensive transcriptome analyses for this species. RESULTS: There was significant variation in gene expression between plant tissues. Comparative transcriptome analysis and weighted gene coexpression network analysis were performed for different C. capsularis tissues at different developmental stages. We identified numerous tissue-specific differentially expressed genes for each tissue, and 12 coexpression modules, comprising 126 to 4203 genes, associated with the development of various tissues. There was high consistency between the genes in modules related to tissues, and the candidate upregulated genes for each tissue. Further, a gene network including 21 genes directly regulated by transcription factor OMO55970.1 was discovered. Some of the genes, such as OMO55970.1, OMO51203.1, OMO50871.1, and OMO87663.1, directly involved in the development of stem bast tissue. CONCLUSION: We identified genes that were differentially expressed between tissues of the same developmental stage. Some genes were consistently up- or downregulated, depending on the developmental stage of each tissue. Further, we identified numerous coexpression modules and genes associated with the development of various tissues. These findings elucidate the molecular mechanisms underlying the development of each tissue, and will promote multipurpose molecular breeding in jute and other fiber crops.


Asunto(s)
Corchorus/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Perfilación de la Expresión Génica , Especificidad de Órganos , ARN de Planta
4.
BMC Plant Biol ; 19(1): 391, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500566

RESUMEN

BACKGROUND: Jute (Corchorus spp.) is the most important natural fiber crop after cotton in terms of cultivation area and production. Salt stress greatly restricts plant development and growth. A high-density genetic linkage map is the basis of quantitative trait locus (QTLs) mapping. Several high-density genetic maps and QTLs mapping related to salt tolerance have been developed through next-generation sequencing in many crop species. However, such studies are rare for jute. Only several low-density genetic maps have been constructed and no salt tolerance-related QTL has been mapped in jute to date. RESULTS: We developed a high-density genetic map with 4839 single nucleotide polymorphism markers spanning 1375.41 cM and an average distance of 0.28 cM between adjacent markers on seven linkage groups (LGs) using an F2 jute population, LGs ranged from LG2 with 299 markers spanning 113.66 cM to LG7 with 1542 markers spanning 350.18 cM. In addition, 99.57% of gaps between adjacent markers were less than 5 cM. Three obvious and 13 minor QTLs involved in salt tolerance were identified on four LGs explaining 0.58-19.61% of the phenotypic variance. The interval length of QTL mapping varied from 1.3 to 20.2 cM. The major QTL, qJST-1, was detected under two salt stress conditions that explained 11.81 and 19.61% of the phenotypic variation, respectively, and peaked at 19.3 cM on LG4. CONCLUSIONS: We developed the first high-density and the most complete genetic map of jute to date using a genotyping-by-sequencing approach. The first QTL mapping related to salt tolerance was also carried out in jute. These results should provide useful resources for marker-assisted selection and transgenic breeding for salt tolerance at the germination stage in jute.


Asunto(s)
Corchorus/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Tolerancia a la Sal/genética , Adaptación Fisiológica/genética , Mapeo Cromosómico , Corchorus/genética
5.
BMC Genomics ; 19(1): 512, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29969983

RESUMEN

BACKGROUND: Flax (Linum usitatissimum. L) is an ancient oilseed and natural fiber crop. It could be divided into three categories by use, namely oil flax, fiber flax and oil-fiber dual purpose (OF). Cultivated flax is widely used in the food and textile industry. It is of great significance to elucidate the genetic characteristics of flax collections for accelerating the process of breeding improvement in this dual purpose crop. With the development of next-generation sequencing, we can use new methods, such as SLAF-seq (specific-locus amplified fragment sequencing), to decode unknown genomes of species. In this study, a high-through sequencing of flax collections using SLAF-seq was conducted. The evolutionary tendency was defined and candidate genes associated with agronomic traits of flax species were identified by Genome-Wide Association Studying (GWAS). RESULTS: A flax collection consisting of 224 varieties were sequenced by SLAF-seq. In total, 346,639 SLAF tags were developed from all accessions, with an average sequencing depth of 7.19 for each accession. A total of 584,987 SNPs (single nucleotide polymorphism) with an MAF > 0.05 were identified from these SLAFs. The population structure division and phylogenetic analysis indicated a strong divergence among three kinds of flax groups. The genome-wide variation uncovered that oil flax had the highest genetic diversity and was considered to be the ancestor of fiber flax and oil-fiber flax. Sixteen associated peak SNPs for six traits were obtained by GWAS of oil-related traits using EMMAX (efficient mixed-model association eXpedited). Candidate genes and their related pathway were evaluated. A new GWAS was developed for fiber properties using the GLM (General linear model) model and a number of loci were identified. CONCLUSIONS: To our knowledge, this is the first study on discovery multiple loci for important agronomic traits of flax species using GWAS strategy. These results will provide the highest possibility of incorporating both high fiber and good oil traits in a single variety.


Asunto(s)
Lino/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Evolución Biológica , Lino/clasificación , Flujo Génico , Variación Genética , Desequilibrio de Ligamiento , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
6.
Genome ; 61(5): 323-327, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29420906

RESUMEN

Jute (Corchorus spp.) is one of the most commercially important bast fiber crops in the world. However, molecular markers and high-density genetic maps are still lacking on jute compared with other crops. Insertion/deletion (InDel) markers, one of the most abundant sources of DNA/RNA variations in plant genomes, can easily be distinguished among different accessions using high-throughput sequencing. Using three transcriptome datasets, we identified and developed InDel markers. Altogether, 51 172 InDel sites in 18 800 unigenes were discovered, and the number of InDel loci per unigene varied from 1 to 31. Further, we found 94 InDel types, varying from 1 to 159 bp; the most common were single-nucleotide (23 028), binucleotide (9824), and trinucleotide (9182). In total, 49 563 InDels in 18 445 transcripts were discovered in the comparison between TC and YG, followed by 48 934 InDels in 18 408 transcripts between NY and YG, and 3570 InDels in 2701 unigenes between NY and TC. Additionally, there were 1273 InDel sites in 1129 unigenes with polymorphisms between any two of the three accessions. Twenty-nine (58%) primer pairs represented polymorphisms when compared to the jute accessions, and PIC varied from 0.340 to 0.680, with an average of 0.491.


Asunto(s)
Corchorus/genética , Bases de Datos Genéticas , Genoma de Planta , Mutación INDEL , Polimorfismo Genético , ARN Mensajero/genética , Transcriptoma , Mapeo Cromosómico , Corchorus/clasificación , Corchorus/metabolismo , Cartilla de ADN/síntesis química , Cartilla de ADN/metabolismo , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo
7.
Plants (Basel) ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38475435

RESUMEN

Excessive soil salinity is a major stressor inhibiting crops' growth, development, and yield. Seed germination is a critical stage of crop growth and development, as well as one of the most salt-sensitive stages. Salt stress has a significant inhibitory effect on seed germination. Okra is a nutritious vegetable, but its seed germination percentage (GP) is low, whether under salt stress conditions or suitable conditions. In this study, we used 180 okra accessions and conducted a genome-wide association study (GWAS) on the germination percentage using 20,133,859 single nucleotide polymorphic (SNP) markers under 0 (CK, diluted water), 70 (treatment 1, T1), and 140 mmol/L (treatment 2, T2) NaCl conditions. Using the mixed linear model (MLM) in Efficient Mixed-model Association eXpedated (EMMAX) and Genome-wide Efficient Mixed Model Association (GEMMA) software, 511 SNP loci were significantly associated during germination, of which 167 SNP loci were detected simultaneously by both programs. Among the 167 SNPs, SNP2619493 on chromosome 59 and SNP2692266 on chromosome 44 were detected simultaneously under the CK, T1, and T2 conditions, and were key SNP loci regulating the GP of okra seeds. Linkage disequilibrium block analysis revealed that nsSNP2626294 (C/T) in Ae59G004900 was near SNP2619493, and the amino acid changes caused by nsSNP2626294 led to an increase in the phenotypic values in some okra accessions. There was an nsSNP2688406 (A/G) in Ae44G005470 near SNP2692266, and the amino acid change caused by nsSNP2688406 led to a decrease in phenotypic values in some okra accessions. These results indicate that Ae59G004900 and Ae44G005470 regulate the GP of okra seeds under salt and no-salt stresses. The gene expression analysis further demonstrated these results. The SNP markers and genes that were identified in this study will provide reference for further research on the GP of okra, as well as new genetic markers and candidate genes for cultivating new okra varieties with high GPs under salt and no-salt stress conditions.

8.
Theor Appl Genet ; 122(8): 1481-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21344183

RESUMEN

Linolenic acid (LN) in soybean (Glycine max L. Merr.) seed mainly contributes to the undesirable odors and flavors commonly associated with poor oil quality. LN deposition at various stages of soybean seed development had not been reported by 2010. The objects of this study were (1) to identify and measure quantitative trait loci (QTL) underlying LN content and (2) to estimate the QTL effects expressed from earlier seed developmental stages to drying seed of soybean. One hundred and twenty-five F(5:8) and F(5:9) recombinant inbred lines derived from the cross of soybean cultivars 'Hefeng 25' and 'Dongnong L5' were used for the identification of QTL underlying LN content from the 37 day (D) to 86D stages after flowering, at Harbin in 2008 and 2009. QTL × Environment interactions (QE) effects were evaluated using a mixed genetic model (Zhu in J Zhejiang Univ (Natural Science) 33:327-335, 1999). Twelve unconditional QTL and 12 conditional QTL associated with LN content were identified at different developmental stages. Most of the QTL explained <10% of phenotypic variation of LN content. Unconditional QTL QLNF-1, QLNC2-1, QLND1b-1, QLNA2-1 and QLNH-1 influenced LN content across different development stages and environments. Conditional QTL QLNF-1, QLNC2-1 and QLNH-1 were identified in multiple developmental stages and environments. Conditional and unconditional QTL clustered in neighboring intervals on linkage groups A2, C2 and D1b. Ten QTL with conditional additive main effects (a) and/or conditional additive × environment interaction effects (ae) at specific developmental stage were identified on nine linkage groups. Of them, six QTL only possessed additive main effects and seven QTL had significant ae effects in different developmental stages. A total of 13 epistatic pairwise QTL were identified by conditional mapping in different developmental stages. Two pairs of QTL only showed aa effects and five pairs of QTL only showed aae effects at different developmental stages. QTL with aa effects, as well as their environmental interaction effects, appeared to vary at different developmental stages.


Asunto(s)
Glycine max/genética , Sitios de Carácter Cuantitativo/genética , Semillas/crecimiento & desarrollo , Ácido alfa-Linolénico/metabolismo , Cromatografía de Gases , Cruzamientos Genéticos , Ligamiento Genético , Modelos Genéticos , Reacción en Cadena de la Polimerasa , Semillas/genética , Ácido alfa-Linolénico/genética
9.
Plant Sci ; 286: 98-107, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31300147

RESUMEN

Flax seeds have a high oil content and are rich in unsaturated fatty acids, which have advantageous effects in preventing chronic diseases, such as cardiovascular diseases. At present, flax seeds are mainly developed for oil. Therefore, it is of practical significance to identify the candidate genes of fatty acid metabolism in flax seeds for breeding flax seeds with high oil content. In the present study, a natural population of flax containing 224 samples planted in 3 different environments was studied. The genome-wide association analysis (GWAS) of seed fatty acid content was conducted based on specific length amplified fragment sequencing (SLAF-seq) data. Transcriptome sequencing (RNA-seq) of samples from 3 different periods (14 d, 21 d and 28 d after anthesis) during seed development of the low oil variety Shuangya 4 and the high oil variety NEW was performed. The candidate genes for seed fatty acid metabolism were identified by combined analysis of these 2 methods. GWAS detected 16 SNP loci significantly associated with seed fatty acid content, and RNA-seq analysis identified 11,802 differentially expressed genes between high and low oil samples. Pathway enrichment analysis revealed that some differentially expressed genes were classified into fatty acid-related pathways. After comparison of these differentially expressed genes with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, 20 genes homologous to other species were obtained. After analysis, 10 candidate genes were screened by GWAS and RNA-seq screening. Of these 10 genes, qRT-PCR assays using flax seeds in 5 different developmental stages showed that the expression levels of 6 candidate genes were significantly correlated with 5 fatty acid contents in seeds of the high oil variety NEW. Through metabolic pathway analysis found that 6 genes were involved in important fatty acid metabolic pathways, and some of them also have upstream and downstream regulation relations. The present study combined GWAS and RNA-seq methods to identify candidate genes for fatty acid metabolism in flax seeds, which provided reference for screening of candidate genes with complex traits.


Asunto(s)
Ácidos Grasos/metabolismo , Lino/genética , Genes de Plantas , Estudio de Asociación del Genoma Completo , Transcriptoma , Lino/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Análisis de Secuencia de ARN
10.
Genes (Basel) ; 9(8)2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082666

RESUMEN

Ovate Family Protein1 (OFP1) is a regulator, and it is suspected to be involved in plant growth and development. Meanwhile, Arabidopsis Thaliana Homeobox (ATH1), a BEL1-like homeodomain (HD) transcription factor, is known to be involved in regulating stem growth, flowering time and flower basal boundary development in Arabidopsis. Previous large-scale yeast two-hybrid studies suggest that ATH1 possibly interact with OFP1, but this interaction is yet unverified. In our study, the interaction of OFP1 with ATH1 was verified using a directional yeast two-hybrid system and bimolecular fluorescence complementation (BiFC). Our results also demonstrated that the OFP1-ATH1 interaction is mainly controlled by the HD domain of ATH1. Meanwhile, we found that ATH1 plays the role of transcriptional repressor to regulate plant development and that OFP1 can enhance ATH1 repression function. Regardless of the mechanism, a putative functional role of ATH1-OFP1 may be to regulate the expression of the both the GA20ox1 gene, which is involved in gibberellin (GA) biosynthesis and control of stem elongation, and the Flowering Locus C (FLC) gene, which inhibits transition to flowering. Ultimately, the regulatory functional mechanism of OFP1-ATH1 may be complicated and diverse according to our results, and this work lays groundwork for further understanding of a unique and important protein⁻protein interaction that influences flowering time, stem development, and flower basal boundary development in plants.

11.
Rice (N Y) ; 11(1): 24, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29671148

RESUMEN

BACKGROUND: Cold stress can cause serious abiotic damage that limits the growth, development and yield of rice. Cold tolerance during the booting stage of rice is a key factor that can guarantee a high and stable yield under cold stress. The cold tolerance of rice is controlled by quantitative trait loci (QTLs). Based on the complex genetic basis of cold tolerance in rice, additional efforts are needed to detect reliable QTLs and identify candidate genes. In this study, recombinant inbred lines (RILs) derived from a cross between a cold sensitive variety, Dongnong422, and strongly cold-tolerant variety, Kongyu131, were used to screen for cold-tolerant loci at the booting stage of rice. RESULTS: A novel major QTL, qPSST6, controlling the percent seed set under cold water treatment (PSST) under the field conditions of 17 °C cold water irrigation was located on the 28.4 cM interval on chromosome 6. Using the combination of bulked-segregant analysis (BSA) and next-generation sequencing (NGS) technology (Seq-BSA), a 1.81 Mb region that contains 269 predicted genes on chromosome 6 was identified as the candidate region of qPSST6. Two genes, LOC_Os06g39740 and LOC_Os06g39750, were annotated as "response to cold" by gene ontology (GO) analysis. qRT-PCR analysis revealed that LOC_Os06g39750 was strongly induced by cold stress. Haplotype analysis also demonstrate a key role of LOC_Os06g39750 in regulating the PSST of rice, suggesting that it was the candidate gene of qPSST6. CONCLUSIONS: The information obtained in this study is useful for gene cloning of qPSST6 and for breeding cold-tolerant varieties of rice using marker assisted selection (MAS).

12.
Front Plant Sci ; 8: 2232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375606

RESUMEN

Flax (Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA