RESUMEN
The genus Cinnamomum encompasses diverse species with various applications, particularly in traditional medicine and spice production. This study focuses on Cinnamomum burmanni, specifically on a high-D-borneol-content chemotype, known as the Meipian Tree, in Guangdong Province, South China. This research explores essential oil diversity, chemotypes, and chloroplast genomic diversity among 28 C. burmanni samples collected from botanical gardens. Essential oils were analyzed, and chemotypes classified using GC-MS and statistical methods. Plastome assembly and phylogenetic analysis were conducted to reveal genetic relationships. Results showed distinct chemotypes, including eucalyptol and borneol types, with notable variations in essential oil composition. The chloroplast genome exhibited conserved features, with phylogenetic analysis revealing three major clades. Borneol-rich individuals in clade II suggested a potential maternal inheritance pattern. However, phylogenetic signals revealed that the composition of essential oils is weakly correlated with plastome phylogeny. The study underscores the importance of botanical gardens in preserving genetic and chemical diversity, offering insights for sustainable resource utilization and selective breeding of high-yield mother plants of C. burmanni.
Asunto(s)
Canfanos , Cinnamomum , Lauraceae , Aceites Volátiles , Humanos , Aceites Volátiles/química , Cinnamomum/genética , Filogenia , Herencia MaternaRESUMEN
Guihaiothamnus (Rubiaceae) is an enigmatic, monotypic genus endemic to southwestern China. Its generic status has never been doubted because it is morphologically unique by having rosette habit, showy, long-corolla-tubed flowers, and multi-seeded indehiscent berry-like fruits. The genus has been postulated to be a relict in the broad-leaved forests of China, and to be related to the genus Wendlandia, which was placed in the subfamily Cinchonoideae and recently classified in the tribe Augusteae of the subfamily Dialypetalanthoideae. Using combined evidence from palynology, cytology, and DNA sequences of nuclear ITS and four plastid markers (rps16, trnT-F, ndhF, rbcL), we assessed the phylogenetic position of Guihaiothamnus in Rubiaceae. Our molecular phylogenetic analyses placed the genus deeply nested within Wendlandia. This relationship is corroborated by evidence from palynology and cytology. Using a relaxed molecular clock method based on five fossil records, we dated the stem age of Wendlandia to be 17.46 my and, the split between G. acaulis and related Wendlandia species in southwestern China to be 2.11mya. This young age, coupled with the derived position in Wendlandia, suggests an evolutionary derivation rather than an evolutionary relict of G. acaulis. Its rosette habit and large showy flowers, which are very distinctive from other Wendlandias, are interpreted as a result of recent rapid adaptation to rock and cliff habitats.
Asunto(s)
Filogenia , Rubiaceae/clasificación , Evolución Biológica , China , Fenómenos Ecológicos y Ambientales , Fósiles , Polinización , Rubiaceae/anatomía & histología , Rubiaceae/genética , Análisis de Secuencia de ADNRESUMEN
Essential oil of Cinnamomum burmannii is rich in monoterpenes and sesquiterpenes and is widely used in cosmetics and medicines. Knowledge about the enzymes that catalyze the formation of monoterpenes and sesquiterpenes in C. burmannii is insufficient. Therefore, anatomy observation of C. burmannii at the four developmental stages (7 days, CBS1; 14 days, CBS2; 21 days, CBS3, and 28 days, CBS4) were conducted to elucidate the origins of essential oil production. Twelve full-length transcriptomes of C. burmannii leaves at the four stages were generated using Oxford Nanopore Technologies. GC-MS analysis revealed 15 monoterpene and sesquiterpenes dramatically increased from CBS1 to CBS4. A weighted correlation network analysis (WGCNA) in association and differentially expressed genes across four developmental stages were performed. A total of 44 differentially expressed genes (DEGs) were involved in terpenoid syntheses during leaf development. Among them, the DEGs of the mevalonate acid (MVA) pathway were predominantly expressed at CBS1, while those of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway showed increased expression from CBS2 to CBS4. Besides, fourteen genes were associated with monoterpene synthesis and nine with sesquiterpene synthesis. Functions of these DEGs were further predicted with regard to gene expression profile and phylogenetic relationship with those characterized in previous studies. In addition, 922 long noncoding RNAs (lncRNAs) were detected, of which twelve were predicted to regulate monoterpene and sesquiterpene biosynthesis. The present study provided new insights the molecular mechanisms of monoterpenoid and sesquiterpenoid syntheses of C. burmannii.
RESUMEN
Cinnamomum aromaticum has long been recognized and cultivated in tropical and subtropical Asia for their aromatic bark to produce cinnamon. We reported for the first time the complete plastid genome of C. aromaticum and reconstructed its phylogenetic position. The complete plastid genome is 152,754 bp in length with a quadripartite organization: a large single copy (LSC) region of 93,706 bp and a small single copy (SSC) region of 18,916 bp. Each of the two inverted repeat regions (IRa and IRb) is 20,066 bp. We recovered 128 functional genes, including 84 protein-coding genes, 36 tRNA genes and 8 rRNA genes. The phylogenetic analysis suggested that C. aromaticum and two samples of C. camphora forms a strongly supported clade, which is sister to another cinnamon species of C. verum native to Sri Lanka with strong ultrafast bootstrap support.