Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Cell ; 157(6): 1393-1404, 2014 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-24856969

RESUMEN

Voltage-gated sodium (NaV) channels control the upstroke of the action potentials in excitable cells. Multiple studies have shown distinct roles of NaV channel subtypes in human physiology and diseases, but subtype-specific therapeutics are lacking and the current efforts have been limited to small molecules. Here, we present a monoclonal antibody that targets the voltage-sensor paddle of NaV1.7, the subtype critical for pain sensation. This antibody not only inhibits NaV1.7 with high selectivity, but also effectively suppresses inflammatory and neuropathic pain in mice. Interestingly, the antibody inhibits acute and chronic itch despite well-documented differences in pain and itch modulation. Using this antibody, we discovered that NaV1.7 plays a key role in spinal cord nociceptive and pruriceptive synaptic transmission. Our studies reveal that NaV1.7 is a target for itch management, and the antibody has therapeutic potential for suppressing pain and itch. Our antibody strategy may have broad applications for voltage-gated cation channels.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Prurito/tratamiento farmacológico , Transmisión Sináptica/efectos de los fármacos , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.7/química , Neuronas/metabolismo , Alineación de Secuencia , Médula Espinal/metabolismo
3.
Cereb Cortex ; 33(6): 3026-3042, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35764255

RESUMEN

Ventromedial prefrontal cortex (vmPFC) processes many critical brain functions, such as decision-making, value-coding, thinking, and emotional arousal/recognition, but whether vmPFC plays a role in sleep-wake promotion circuitry is still unclear. Here, we find that photoactivation of dorsomedial hypothalamus (DMH)-projecting vmPFC neurons, their terminals, or their postsynaptic DMH neurons rapidly switches non-rapid eye movement (NREM) but not rapid eye movement sleep to wakefulness, which is blocked by photoinhibition of DMH outputs in lateral hypothalamus (LHs). Chemoactivation of DMH glutamatergic but not GABAergic neurons innervated by vmPFC promotes wakefulness and suppresses NREM sleep, whereas chemoinhibition of vmPFC projections in DMH produces opposite effects. DMH-projecting vmPFC neurons are inhibited during NREM sleep and activated during wakefulness. Thus, vmPFC neurons innervating DMH likely represent the first identified set of cerebral cortical neurons for promotion of physiological wakefulness and suppression of NREM sleep.


Asunto(s)
Sueño REM , Sueño , Sueño/fisiología , Sueño REM/fisiología , Nivel de Alerta , Vigilia/fisiología , Neuronas GABAérgicas/fisiología
4.
Biochem Biophys Res Commun ; 614: 175-182, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35598428

RESUMEN

Maternal exposure to anesthetic agents could impose significant neurocognitive risks on the developing brain of infants. Myelin produced by oligodendrocytes (OLs) is essential for the development of brain. However, the concrete effect of general anesthesia on the development and myelination of OLs is still elusive. In this study, we aim to investigate postnatal myelination and neural behavior after maternal exposure to sevoflurane. Pregnant C57BL/6 J mice (gestational day 15.5) were anesthetized with 2.5% sevoflurane (in 97.5% O2) for 6 h. Cognitive function and motor coordination of the offspring mice were evaluated with novel object recognition, Morris water maze and accelerating rotarod tests. Myelination and development of hippocampal OLs were analyzed with immunohistochemistry, qRT-PCR, western blotting and electron microscopy. The functionality of myelin was measured with electrophysiology. Our results showed that sevoflurane anesthesia during the gestational period induced cognitive and motor impairments in offspring mice, accompanied with damages of myelin structure and down regulations of myelin-associated genes and proteins (including MBP, Olig1, PDGFRα, Sox10, etc.). The development and maturation of OLs were suppressed, and the axonal conduction velocity was declined. These results demonstrated that maternal sevoflurane exposure could induce detrimental effects on cognitive and motor functions in offspring, which might be associated with disrupted myelination of OLs in the hippocampus.


Asunto(s)
Exposición Materna , Trastornos Motores , Animales , Cognición , Femenino , Hipocampo/metabolismo , Humanos , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Trastornos Motores/inducido químicamente , Vaina de Mielina , Oligodendroglía/fisiología , Embarazo , Sevoflurano/efectos adversos
5.
Biochem Biophys Res Commun ; 550: 22-29, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33677132

RESUMEN

Autism spectrum disorders (ASD) are a group of neurological disorders which affect approximately 1% of children around the world. Social dysfunction is one of the two core syndromes of ASD, and still lacks effective treatment. Transcranial magnetic stimulation (TMS) is a noninvasive and safe procedure that uses magnetic fields to modulate neural activity. Whether it were effective in modulating social function remains unclear. By using 3-chamber test, ultrasonic vocalization recording and Western-blotting, we demonstrated that FMR1 (fragile X mental retardation protein) mutant mice, a model of ASD, exhibited obvious defects in social preference and ultrasonic communication. In addition, we detected increase of p-Akt (S473) and p-GSK-3ß (S9), and decrease of p-PSD-95 (T19) in the anterior cingulate cortex (ACC) of FMR1-/- mice. Treating FMR1-/- mice with 1 Hz repetitive TMS (rTMS) exerted a long lasting effect in improving both the ultrasonic communication and social preference, as well as restoring the levels of Akt/GSK-3ß activity and spine density in the FMR1-/-ACC. Our data, for the first time, demonstrated a beneficial effect of low frequency rTMS (LF-rTMS) on the social function of FMR1-/- mice and an involvement of Akt/GSK-3ß signaling in this process, indicating LF-rTMS as a potential therapeutic strategy for ASD patients.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Eliminación de Gen , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Trastorno de la Conducta Social/prevención & control , Trastorno de la Conducta Social/terapia , Estimulación Magnética Transcraneal , Comunicación Animal , Animales , Trastorno del Espectro Autista/prevención & control , Trastorno del Espectro Autista/terapia , Femenino , Giro del Cíngulo/metabolismo , Masculino , Ratones , Factores de Tiempo , Ultrasonido
6.
FASEB J ; 34(6): 8526-8543, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32359120

RESUMEN

Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.


Asunto(s)
Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Morfina/farmacología , Plasticidad Neuronal/fisiología , Médula Espinal/metabolismo , Canales Catiónicos TRPC/metabolismo , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Animales , Tolerancia a Medicamentos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismo
7.
J Pineal Res ; 71(4): e12771, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34585785

RESUMEN

Sevoflurane (Sev) is one of the most widely used pediatric anesthetics. The major concern of neonatal repeated application of Sev is its potential long-term impairment of cognition and learning/memory, for which there still lacks effective treatment. At the cellular level, Sev exerts toxic effects in multiple aspects, making it difficult for effective interference. Melatonin is a pineal hormone regulated by and feedbacks to biological rhythm at physiological condition. Recent studies have revealed significant neuroprotective effects of exogenous melatonin or its agonists under various pathological conditions. Whether melatonin could prevent the long-term toxicity of Sev remains elusive. Here, we report that neonatal repeated Sev exposure up-regulated MT1 receptor in hippocampal neurons and oligodendrocytes. Pretreatment with melatonin significantly alleviated Sev-induced synaptic deficiency, dysmyelination, and long-term learning impairment. Both MT1-shRNA and MT1 knockout effectively blocked the protective effects of melatonin on synaptic development, myelination, and behavior performance. Interestingly, long-lasting suppression of Wnt signaling, instead of cAMP/PKA signaling, was observed in hippocampal neurons and oligodendrocytes after neonatal Sev exposure. Pharmacologically activating Wnt signaling rescued both the long-term synaptic deficits and dysmyelination induced by Sev. Further analysis showed that MT1 receptor co-expressed well with ß-catenin and Axin2 and bound to ß-catenin by its C-terminal. Melatonin pretreatment effectively rescued Sev-induced Wnt suppression. Wnt signaling inhibitor XAV939 significantly compromised the protective effects of melatonin. Taken together, our data demonstrated a beneficial effect of melatonin pretreatment on the long-term synaptic impairment and dysmyelination induced by neonatal Sev exposure, and a novel MT1 receptor-mediated interaction between melatonin and canonical Wnt signaling, indicating that melatonin may be clinically applied for improving the safety of pediatric Sev anesthesia.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Hipocampo , Humanos , Melatonina/farmacología , Receptor de Melatonina MT2 , Sevoflurano/toxicidad , Vía de Señalización Wnt
8.
Glia ; 68(11): 2264-2276, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32530539

RESUMEN

Myelin sheaths, which insulate the axons and ensure saltatory conduction of the nerve impulse, are generated and maintained via largely uncharacterized mechanisms. Ermin is an oligodendrocyte-specific protein associated with the cytoskeleton, but how it regulates cytoskeletal remodeling during oligodendrocyte differentiation and its role in myelin maintenance are not clear. To address this, we generated mice constitutively deficient for Ermn, the Ermin-coding gene. We found that aged Ermn-knockout mice exhibit an aberrant myelin architecture, with splitting of myelin layers, peeling of the myelin sheath from axons, and breakdown of myelinated fibers. As a result, these mice had remarkably impaired motor coordination. Ermn knockout also accelerated cuprizone-induced demyelination and exacerbated the associated movement disorders. Ermin was found to contribute to oligodendrocyte morphogenesis by associating with the myosin phosphatase Rho interacting protein (Mprip/p116RIP ) and inactivating RhoA, a GTPase that controls cytoskeletal rearrangement in differentiating cells. These findings provide novel insights into the mechanisms regulating oligodendroglial differentiation, the maintenance of the myelin sheaths, and remyelination.


Asunto(s)
Vaina de Mielina , Remielinización , Animales , Cuprizona/toxicidad , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Oligodendroglía
9.
J Neurochem ; 154(4): 372-388, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31705656

RESUMEN

Sevoflurane is one of the most widely used anesthetics with recent concerns rising about its pediatric application. The synaptic toxicity and mechanisms underlying its long-term cognition impairment remain unclear. In this study, we investigated the expression and roles of homeodomain interacting protein kinase 2 (HIPK2), a stress activating kinase involved in neuronal survival and synaptic plasticity, and its downstream c-Jun N-terminal kinase (JNK)/c-Jun signaling in the long-term toxicity of neonatal Sevoflurane exposure. Our data showed that neonatal Sevoflurane exposure results in impairment of memory, enhancement of anxiety, less number of excitatory synapses and lower levels of synaptic proteins in the hippocampus of adult rats without significant changes of hippocampal neuron numbers. Up-regulation of HIPK2 and JNK/c-Jun was observed in hippocampal granular neurons shortly after Sevoflurane exposure and persisted to adult. 5-((6-Oxo-5-(6-(piperazin-1-yl)pyridin-3-yl)-1,6-dihydropyridin-3-yl)methylene)thiazolidine-2,4-dione trifluoroacetate, antagonist of HIPK2, could significantly rescue the cognition impairment, decrease in long-term potentiation, reduction in spine density and activation of JNK/c-Jun induced by Sevoflurane. JNK antagonist SP600125 partially restored synapse development and cognitive function without affecting the expression of HIPK2. These data, in together, revealed a novel role of HIPK2-JNK/c-Jun signaling in the long-term synaptic toxicity and cognition impairment of neonatal Sevoflurane exposure, indicating HIPK2-JNK/c-Jun cascade as a potential target for reducing the synaptic toxicity of Sevoflurane. Cover Image for this issue: doi: 10.1111/jnc.14757.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Hipocampo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Sevoflurano/toxicidad , Animales , Animales Recién Nacidos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
10.
Cell Mol Neurobiol ; 40(5): 801-812, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31863221

RESUMEN

Cerebral glycogen is principally localized in astrocytes rather than in neurons. Glycogen metabolism has been implicated in higher brain functions, including learning and memory, yet the distribution patterns of glycogen in different types of astrocytes have not been fully described. Here, we applied a method based on the incorporation of 2-NBDG, a D-glucose fluorescent derivative that can trace glycogen, to investigate glycogen's distribution in the brain. We identified two types of astrocytes, namely, 2-NBDGI (glycogen-deficient) and 2-NBDGII (glycogen-rich) cells. Whole-cell patch-clamp and fluorescence-activated cell sorting (FACS) were used to separate 2-NBDGII astrocytes from 2-NBDGI astrocytes. The expression levels of glycogen metabolic enzymes were analyzed in 2-NBDGI and 2-NBDGII astrocytes. We found unique glycogen metabolic patterns between 2-NBDGI and 2-NBDGII astrocytes. We also observed that 2-NBDGII astrocytes were mainly identified as fibrous astrocytes but not protoplasmic astrocytes. Our data reveal cell type-dependent glycogen distribution and metabolism patterns, suggesting diverse functions of these different astrocytes.


Asunto(s)
Astrocitos/metabolismo , Glucógeno/metabolismo , Análisis de la Célula Individual/métodos , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/química , Animales , Astrocitos/química , Células Cultivadas , Corteza Cerebral/metabolismo , Desoxiglucosa/análogos & derivados , Desoxiglucosa/química , Glucosa , Glucógeno/análisis , Glucógeno/deficiencia , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
11.
Neural Plast ; 2020: 8875915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33273909

RESUMEN

Brachial plexus injuries (BPIs) are high-energy trauma that can result in serious functional problems in the affected upper extremities, and brachial plexus avulsion (BPA) could be considered the most severe type of them. The booming occurrence rate of BPA brings up devastating impact on patients' life. Complications of muscle atrophy, neuropathic pain, and denervation-associated psychological disorders are major challenges in the treatment of BPA. Animal models of BPA are good vehicles for this kind of research. Full understanding of the current in vivo BPA models, which could be classified into anterior approach avulsion, posterior approach avulsion, and closed approach avulsion groups, could help researchers select the appropriate type of models for their studies. Each group of the BPA model has its distinct merits and demerits. An ideal BPA model that can inherit the advantages and make up for the disadvantages is still required for further exploration.


Asunto(s)
Plexo Braquial/lesiones , Modelos Animales de Enfermedad , Neuralgia/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología , Animales , Neuralgia/etiología , Dimensión del Dolor , Traumatismos de los Nervios Periféricos/complicaciones
12.
Glia ; 67(6): 1062-1075, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30648289

RESUMEN

Chronic pain is one of the most prevalent chronic diseases in the world. The plastic changes of sensory neurons in dorsal root ganglia (DRG) have been extensively studied as the underlying periphery mechanism. Recent studies revealed that satellite cells, the major glial cells in DRG, also played important roles in the development/modulation of chronic pain. Whether DRG satellite glial cells generate new neurons as their counterparts in enteric nerve ganglia and carotid body do under pathological conditions remains poorly investigated. Here, we report that chronic pain induces proliferation and upregulation of progenitor markers in the sex-determining region Y-box 2 (Sox2)- and platelet-derived growth factor receptor alpha (PDGFRα)-positive satellite glial cells. BrdU incorporation assay revealed the generation of IB4- and CGRP-positive neurons, but not NF200-positive neurons in DRG ipsilateral to injury. Genetic fate tracings showed that PDGFRα-positive cells did not generate neurons, whereas Sox2-positive cells produced both IB4- and CGRP-positive neurons. Interestingly, glial fibrillary acidic protein-positive cells, a subpopulation of Sox2-positive satellites, only gave birth to IB4-positive neurons. Local persistent delivery of tetrodotoxin to the sciatic nerve trunk significantly reduced the pain-induced neurogenesis. Furthermore, patch-clamp studies demonstrated that these glia-derived new neurons could fire action potentials and respond to capsaicin. Taken together, our data demonstrated a chronic pain-induced nociceptive neurogenesis in DRG from Sox2-positive satellite cells, indicating a possible contribution of DRG neurogenesis to the pathology of chronic pain.


Asunto(s)
Dolor Crónico/metabolismo , Ganglios Espinales/metabolismo , Neurogénesis/fisiología , Factores de Transcripción SOXB1/biosíntesis , Células Satélites Perineuronales/metabolismo , Animales , Dolor Crónico/patología , Ganglios Espinales/química , Ganglios Espinales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción SOXB1/análisis , Células Satélites Perineuronales/química , Células Satélites Perineuronales/patología
13.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29303989

RESUMEN

Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.


Asunto(s)
Potenciales de Acción , Ganglios Espinales/citología , Neuralgia/fisiopatología , Neuronas Aferentes/fisiología , Animales , Células Cultivadas , Ganglios Espinales/fisiopatología , Masculino , Plasticidad Neuronal , Neuronas Aferentes/clasificación , Ratas , Ratas Sprague-Dawley
14.
Mol Pain ; 13: 1744806917707127, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28587505

RESUMEN

Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aß fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( Ih) revealed that Ih was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased Ih was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of Ih with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.


Asunto(s)
Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Neuronas/citología , Neuronas/metabolismo , Radiculopatía/etiología , Radiculopatía/metabolismo , Animales , Dolor Crónico/etiología , Dolor Crónico/metabolismo , Dolor Crónico/patología , Masculino , Potenciales de la Membrana/fisiología , Neuralgia/patología , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Radiculopatía/patología , Ratas , Ratas Sprague-Dawley
15.
PLoS Biol ; 10(3): e1001283, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22427743

RESUMEN

Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Potenciación a Largo Plazo , Nociceptores/metabolismo , Dolor/patología , Aminoquinolinas/farmacología , Animales , Conducta Animal , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Activación Enzimática , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Eliminación de Gen , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Nociceptores/efectos de los fármacos , Nociceptores/patología , Dolor/metabolismo , Técnicas de Placa-Clamp , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Transducción de Señal , Especificidad por Sustrato , Transmisión Sináptica
16.
Brain ; 137(Pt 8): 2193-209, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24919967

RESUMEN

Accumulating evidence suggests that spinal cord astrocytes play an important role in neuropathic pain sensitization by releasing astrocytic mediators (e.g. cytokines, chemokines and growth factors). However, it remains unclear how astrocytes control the release of astrocytic mediators and sustain late-phase neuropathic pain. Astrocytic connexin-43 (now known as GJ1) has been implicated in gap junction and hemichannel communication of cytosolic contents through the glial syncytia and to the extracellular space, respectively. Connexin-43 also plays an essential role in facilitating the development of neuropathic pain, yet the mechanism for this contribution remains unknown. In this study, we investigated whether nerve injury could upregulate connexin-43 to sustain late-phase neuropathic pain by releasing chemokine from spinal astrocytes. Chronic constriction injury elicited a persistent upregulation of connexin-43 in spinal astrocytes for >3 weeks. Spinal (intrathecal) injection of carbenoxolone (a non-selective hemichannel blocker) and selective connexin-43 blockers (connexin-43 mimetic peptides (43)Gap26 and (37,43)Gap27), as well as astroglial toxin but not microglial inhibitors, given 3 weeks after nerve injury, effectively reduced mechanical allodynia, a cardinal feature of late-phase neuropathic pain. In cultured astrocytes, TNF-α elicited marked release of the chemokine CXCL1, and the release was blocked by carbenoxolone, Gap26/Gap27, and connexin-43 small interfering RNA. TNF-α also increased connexin-43 expression and hemichannel activity, but not gap junction communication in astrocyte cultures prepared from cortices and spinal cords. Spinal injection of TNF-α-activated astrocytes was sufficient to induce persistent mechanical allodynia, and this allodynia was suppressed by CXCL1 neutralization, CXCL1 receptor (CXCR2) antagonist, and pretreatment of astrocytes with connexin-43 small interfering RNA. Furthermore, nerve injury persistently increased excitatory synaptic transmission (spontaneous excitatory postsynaptic currents) in spinal lamina IIo nociceptive synapses in the late phase, and this increase was suppressed by carbenoxolone and Gap27, and recapitulated by CXCL1. Together, our findings demonstrate a novel mechanism of astrocytic connexin-43 to enhance spinal cord synaptic transmission and maintain neuropathic pain in the late-phase via releasing chemokines.


Asunto(s)
Astrocitos/metabolismo , Quimiocinas/metabolismo , Conexina 43/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Animales , Conducta Animal/fisiología , Células Cultivadas , Quimiocina CXCL1/antagonistas & inhibidores , Quimiocina CXCL1/metabolismo , Quimiocinas/biosíntesis , Conexina 43/fisiología , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Hiperalgesia/terapia , Inyecciones Espinales , Ratones , Ratones Transgénicos , Neuralgia/etiología , Neuralgia/terapia , Péptidos/administración & dosificación , Péptidos/fisiología , Receptores de Interleucina-8B/antagonistas & inhibidores , Receptores de Interleucina-8B/metabolismo , Médula Espinal/citología , Médula Espinal/patología , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
17.
J Neurosci ; 33(33): 13425-30, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946399

RESUMEN

It is well established that activation of NMDARs plays an essential role in spinal cord synaptic plasticity (i.e., central sensitization) and pain hypersensitivity after tissue injury. Despite prominent expression of NMDARs in DRG primary sensory neurons, the unique role of peripheral NMDARs in regulating intrinsic neuronal excitability and pain sensitivity is not well understood, in part due to the lack of selective molecular tools. To address this problem, we used Advillin-Cre driver to delete the NR1 subunit of NMDARs selectively in DRG neurons. In NR1 conditional knock-out (NR1-cKO) mice, NR1 expression is absent in DRG neurons but remains normal in spinal cord neurons; NMDA-induced currents are also eliminated in DRG neurons of these mice. Surprisingly, NR1-cKO mice displayed mechanical and thermal hypersensitivity compared with wild-type littermates. NR1-deficient DRG neurons show increased excitability, as indicated by increased frequency of action potentials, and enhanced excitatory synaptic transmission in spinal cord slices, as indicated by increased frequency of miniature EPSCs. This hyperexcitability can be reproduced by the NMDAR antagonist APV and by Ca(2+)-activated slow conductance K(+) (SK) channel blocker apamin. Furthermore, NR1-positive DRG neurons coexpress SK1/SK2 and apamin-sensitive afterhyperpolarization currents are elevated by NMDA and suppressed by APV in these neurons. Our findings reveal the hitherto unsuspected role of NMDARs in controlling the intrinsic excitability of primary sensory neurons possibly via Ca(2+)-activated SK channels. Our results also call attention to potential opposing effects of NMDAR antagonists as a treatment for pain and other neurological disorders.


Asunto(s)
Proteínas Portadoras/metabolismo , Hiperalgesia/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Células Receptoras Sensoriales/metabolismo , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Dolor/metabolismo , Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/fisiología
18.
Cancer Sci ; 105(9): 1109-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25040744

RESUMEN

We previously reported that hypoxia-induced MDR in gastric cancer (GC) cells is hypoxia-inducible factor-1 (HIF-1)-dependent. However, the exact mechanisms are still unknown. Our previous study revealed that Krüppel-like factor 8 (KLF8), a novel transcription factor, was associated with malignant phenotype in GC cells. KLF8 is overexpressed in clear cell renal carcinoma lacking von Hippel-Lindau protein function, which resulted in HIF-1 stabilization. Given this association, we hypothesized that KLF8 contributed to hypoxia-induced MDR in GC cells. Initial experiments revealed that hypoxia could increase KLF8 and HIF-1α expressions in GC cells, and KLF8 levels in GC drug-resistant cell lines were higher than in parental cell lines. Subsequent experiments showed that in normoxia, exogenous KLF8 could promote the MDR phenotype; however, blocking KLF8 expression could effectively reverse the MDR phenotype induced by hypoxia. Overexpressed KLF8 increased resistance-associated gene MDR1 mRNA levels, Bcl-2 and P-gp protein levels, and decreased Bax and caspase-3 protein levels in GC cells, and knockout KLF8 reversed these effects. Dual luciferase reporter and ChIP assays showed that KLF8 could promote MDR1 transcriptional activity by combining with KLF8 binding sites located in the upstream of MDR1 transcriptional start site. These results suggest that KLF8 is involved in hypoxia-induced MDR through inhibiting apoptosis and increasing the drug release rate by directly regulating MDR1 transcription.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Proteínas Represoras/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antibióticos Antineoplásicos/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores de Transcripción de Tipo Kruppel , Neoplasias Gástricas , Transcripción Genética , Activación Transcripcional
19.
Neurosci Bull ; 40(8): 1173-1188, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38372931

RESUMEN

Optogenetics, a technique that employs light for neuromodulation, has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity. However, visible light, particularly blue and green light, commonly used in conventional optogenetics, has limited penetration in biological tissue. This limitation necessitates the implantation of optical fibers for light delivery, especially in deep brain regions, leading to tissue damage and experimental constraints. To overcome these challenges, the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation. In this review, we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths. We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation. Then, we summarize two novel tetherless neuromodulation methods using near-infrared light: upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation. In addition, we discuss recent advances in mid-infrared optical neuromodulation.


Asunto(s)
Rayos Infrarrojos , Optogenética , Optogenética/métodos , Humanos , Animales , Nanopartículas
20.
Mol Neurobiol ; 61(8): 4976-4991, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38157119

RESUMEN

Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.


Asunto(s)
Ansiedad , Quimiocina CCL2 , Giro del Cíngulo , Inflamación , N-Metilaspartato , Dolor , Receptores CCR2 , Receptores de N-Metil-D-Aspartato , Transducción de Señal , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Masculino , Ansiedad/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Quimiocina CCL2/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inhibidores , Dolor/metabolismo , Dolor/patología , Transducción de Señal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Adyuvante de Freund/toxicidad , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Conducta Animal , Hiperalgesia/metabolismo , Hiperalgesia/patología , Compuestos de Espiro , Benzoxazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA