Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 24(10): 2365-2369, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29315875

RESUMEN

Three new proton conductors with simple structures based on isolated olyoxometalate anions as well as protonated imidazole and benzimidazole, namely, NNU-6-8, have been successfully prepared by hydrothermal reaction. We could control the number of proton sources by selecting different types and changing the charges of POM anions. The single crystal sample of NNU-6 along a-axis shows a highest proton conductivity of 1.91×10-2  S cm-1 , which is two and three orders of magnitude higher than that of 2.42×10-4 and 8.90×10-5  S cm-1 along b- and c-axes, respectively, due to the more unobstructed H-bonding network and stronger π-π stacking between benzimidazole rings as proton-transferring pathway along a-axis than that along b and c axes. It is a straightforward model to understand the metaphysical proton-conducting process, and this is the first time to put forward the idea that π-π stacking could assist proton transfer and be in favor of proton conduction, which has been demonstrated by calculating potential energy surfaces of proton transfer between benzimidazole molecules.

2.
Chem Sci ; 10(1): 185-190, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30746078

RESUMEN

The photocatalytic reduction of CO2 to value-added methane (CH4) has been a promising strategy for sustainable energy development, but it is challenging to trigger this reaction because of its necessary eight-electron transfer process. In this work, an efficient photocatalytic CO2-to-CH4 reduction reaction was achieved for the first time in aqueous solution by using two crystalline heterogeneous catalysts, H{[Na2K4Mn4(PO4) (H2O)4]⊂{[Mo6O12(OH)3(HPO4)3(PO4)]4[Mn6(H2O)4]}·16H2O (NENU-605) and H{[Na6CoMn3(PO4)(H2O)4]⊂{[Mo6O12(OH)3(HPO4)3(PO4)]4[Co1.5Mn4.5]}·21H2O (NENU-606). Both compounds have similar host inorganic polyoxometalate (POM) structures constructed with strong reductive {P4Mo6 V} units, homo/hetero transition metal ions (MnII/CoIIMnII) and alkali metal ions (K+ and/or Na+). It is noted that the {P4Mo6 V} cluster including the six MoV atoms served as a multi-electron donor in the case of a photocatalytic reaction, while the transition metal ions functioned as catalytically active sites for adsorbing and activating CO2 molecules. Additionally, the presence of alkali metal ions was believed to assist in the capture of more CO2 for the photocatalytic reaction. The synergistic combination of the above-mentioned components in NENU-605 and NENU-606 effectively facilitates the accomplishment of the required eight-electron transfer process for CH4 evolution. Furthermore, NENU-606 containing hetero-metallic active sites finally exhibited higher CH4 generation selectivity (85.5%) than NENU-605 (76.6%).

3.
ACS Appl Mater Interfaces ; 8(7): 4516-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26835705

RESUMEN

Heteronanomaterials composed of suitable semiconductors enable the direct conversion from solar power into clean and renewable energy. Ternary heterostructures with appropriate configuration and morphology possess rich and varied properties, especially for improving the photocatalytic activity and stability synchronously. However, suitable ternary heterostructure prototypes and facile while effective strategy for modulating their morphology and configuration are still scarce. Herein, various ternary ZnS-CdS-Zn(1-x)Cd(x)S heterostructures with tunable morphology (0 to 2 D) and semiconductor configurations (randomly distributed, interface mediated, and quantum dots sensitized core@shell heterostructures) were facilely synthesized via one-pot hydrothermal method resulting from the different molecular structures of the amine solvents. Semiconductor morphology, especially configuration of the ternary heterostructure, shows dramatic effect on their photocatalytic activity. The CdS sensitized porous Zn(1-x)CdxS@ZnS core@shell takes full advantage of ZnS, Zn(1-x)Cd(x)S and CdS and shows the maximal photocatalytic H2-production rate of 100.2 mmol/h/g and excellent stability over 30 h. This study provides some guidelines for the design and synthesis of high-performance ternary heterostructure via modulation of semiconductor configuration and morphology using one-pot method.

4.
ACS Appl Mater Interfaces ; 8(23): 14535-41, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27172231

RESUMEN

Various porous Zn1-xCdxS/CdS heteorostructures were achieved via in situ synthesis method with organic amines as the templates. Because of the larger radius of Cd(2+) than that of Zn(2+), CdS quantum dots are formed and distributed uniformly in the network of Zn1-xCdxS. The Zn1-xCdxS/CdS heterostructure with small Cd content (10 at%) derived from ethylenediamine shows very high H2-evolution rate of 667.5 µmol/h per 5 mg photocatalyst under visible light (λ ≥ 420 nm) with an apparent quantum efficiency of 50.1% per 5 mg at 420 nm. Moreover, this Zn1-xCdxS/CdS heterostructure photocatalyst also shows an excellent photocatalytic stability over 100 h.

5.
Adv Mater ; 28(40): 8906-8911, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27553983

RESUMEN

A highly effective, low-cost strategy for improved photocatalytic efficiency and stability of CdS is described. Based on the integration of hexagonal-cubic core-shell architecture with nanorod morphology, the concentric CdS nanorod phase junctions (NRPJs) obtained demonstrate extremely high H2 production rate and unprecedented photocatalytic stability.

6.
Chem Sci ; 6(9): 5263-5268, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717503

RESUMEN

We designed and successfully fabricated a ZnS/CdS 3D mesoporous heterostructure with a mediating Zn1-x Cd x S interface that serves as a charge carrier transport channel for the first time. The H2-production rate and the stability of the heterostructure involving two sulfides were dramatically and simultaneously improved by the careful modification of the interface state via a simple post-annealing method. The sample prepared with the optimal parameters exhibited an excellent H2-production rate of 106.5 mmol h-1 g-1 under visible light, which was 152 and 966 times higher than CdS prepared using ethylenediamine and deionized water as the solvent, respectively. This excellent H2-production rate corresponded to the highest value among the CdS-based photocatalysts. Moreover, this heterostructure showed excellent photocatalytic stability over 60 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA