Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Environ Manage ; 329: 117072, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584516

RESUMEN

Safe and green disposal or utilization of sewage sludge (SS) has attracted significant attention as SS is increasingly produced worldwide and emerges as an environmental burden if without proper treatment. In this study, efficient and sustainable treatment of SS was achieved using plasma-electrolytic liquefaction (PEL) with alkaline catalysts including sodium hydroxide (NaOH), sodium carbonate (Na2CO3), and sodium acetate (NaAc) and renewable solvents including polyethylene glycol (PEG) 200 and glycerol. Furthermore, the obtained bio-oil with abundant hydroxyl groups could partially replace polyols derived from fossil energy to synthesize bio-based polyurethane foams (BPUFs) for oil adsorption. The results showed that the Na2CO3 catalyst exhibited better performance and yielded bio-oil with a higher heating value (HHV) of 26.26 MJ/kg, very low nitrogen content (0.14%) and metal ions, and a nearly neutral pH of 7.41, under the optimized conditions. Compared with conventional oil bath liquefaction, PEL can significantly improve the liquefaction efficiency, promote the transfer of metal ions in SS to the solid residue (SR), and facilitate the transfer of nitrogen to the gas phase and SR, thereby upgrading the bio-oil to a certain extent. The BPUFs showed excellent oil adsorption capacity, reusability, and desorption and can play an important role in combating oil spills. The PEL method may provide a green avenue for SS valorization and the comprehensive utilization of the obtained products.


Asunto(s)
Poliuretanos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Biocombustibles , Iones , Metales/análisis , Poliuretanos/química , Aguas del Alcantarillado/química , Temperatura , Eliminación de Residuos Líquidos/métodos
2.
Ultrason Imaging ; 44(2-3): 105-117, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35574925

RESUMEN

Echocardiography plays an important role in the clinical diagnosis of cardiovascular diseases. Cardiac function assessment by echocardiography is a crucial process in daily cardiology. However, cardiac segmentation in echocardiography is a challenging task due to shadows and speckle noise. The traditional manual segmentation method is a time-consuming process and limited by inter-observer variability. In this paper, we present a fast and accurate echocardiographic automatic segmentation framework based on Convolutional neural networks (CNN). We propose FAUet, a segmentation method serially integrated U-Net with coordinate attention mechanism and domain feature loss from VGG19 pre-trained on the ImageNet dataset. The coordinate attention mechanism can capture long-range dependencies along one spatial direction and meanwhile preserve precise positional information along the other spatial direction. And the domain feature loss is more concerned with the topology of cardiac structures by exploiting their higher-level features. In this research, we use a two-dimensional echocardiogram (2DE) of 88 patients from two devices, Philips Epiq 7C and Mindray Resona 7T, to segment the left ventricle (LV), interventricular septal (IVS), and posterior left ventricular wall (PLVW). We also draw the gradient weighted class activation mapping (Grad-CAM) to improve the interpretability of the segmentation results. Compared with the traditional U-Net, the proposed segmentation method shows better performance. The mean Dice Score Coefficient (Dice) of LV, IVS, and PLVW of FAUet can achieve 0.932, 0.848, and 0.868, and the average Dice of the three objects can achieve 0.883. Statistical analysis showed that there is no significant difference between the segmentation results of the two devices. The proposed method can realize fast and accurate segmentation of 2DE with a low time cost. Combining coordinate attention module and feature loss with the original U-Net framework can significantly increase the performance of the algorithm.


Asunto(s)
Corazón , Imagen por Resonancia Cinemagnética , Ecocardiografía , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Redes Neurales de la Computación
3.
J Hazard Mater ; 460: 132429, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657318

RESUMEN

Understanding the occurrence modes of mercury in coal is important as its release poses long-term adverse effects on the environment and human health during coal production and utilization. However, the matter still remains a subject of controversy due to differing results from direct and indirect analyses, which suggest various possible modes of occurrence for mercury in coal. Additionally, the experimental measurement of Hg concentration presents challenges, further contributing to the complexity of the issue. A comprehensive investigation of experiments and molecular simulations is conducted herein. Electron probe microanalysis and elemental mapping analysis show that elemental Hg is concentrated in framboidal pyrites while absent in organic matter. To understand the occurrence modes of mercury in inorganic and organic materials at the atomic level, molecular simulations are performed for Hg2+ adsorption and retention in MMT, pyrite, and kerogen slit nanopores. It is found that the inorganic MMT and pyrite surfaces have a greater adsorption capacity than the organic kerogen surface (pyrite > MMT > kerogen). The outer-sphere adsorption is mainly observed with at least one monolayer of water molecules exiting between the ion and mineral surfaces. MMT has the highest retention for Hg2+ transport as the self-diffusion coefficient is the smallest among the three slit pores (MMT < pyrite < kerogen). The high adsorption and retention originate from the strong Hg2+-mineral interaction. These results suggest that mercury in coal is most likely associated with inorganic minerals instead of organic matter.

4.
Curr Med Imaging ; 19(2): 149-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35352651

RESUMEN

BACKGROUND: Ultrasound is one of the preferred choices for early screening of dense breast cancer. Clinically, doctors have to manually write the screening report, which is time-consuming and laborious, and it is easy to miss and miswrite. AIM: We proposed a new pipeline to automatically generate AI breast ultrasound screening reports based on ultrasound images, aiming to assist doctors in improving the efficiency of clinical screening and reducing repetitive report writing. METHODS: AI efficiently generated personalized breast ultrasound screening preliminary reports, especially for benign and normal cases, which account for the majority. Doctors then make simple adjustments or corrections based on the preliminary AI report to generate the final report quickly. The approach has been trained and tested using a database of 4809 breast tumor instances. RESULTS: Experimental results indicate that this pipeline improves doctors' work efficiency by up to 90%, greatly reducing repetitive work. CONCLUSION: Personalized report generation is more widely recognized by doctors in clinical practice than non-intelligent reports based on fixed templates or options to fill in the blanks.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Ultrasonografía Mamaria/métodos , Ultrasonografía , Inteligencia Artificial
5.
Oncol Rep ; 44(2): 650-660, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32627005

RESUMEN

Osteosarcoma is a highly malignant disease and is associated with a poor patient prognosis and a high mortality rate. Disease prognosis significantly correlates with chemotherapeutic responses. Cadmium is a heavy metal with specific effects on bone, but its benefits for osteosarcoma treatment have not been characterized. In the present study, cadmium chloride was used to treat MG63 osteosarcoma cells, and their gene expression profiles were assessed by GeneChip technology. We found that forkhead box protein M1 (FOXM1) was downregulated by cadmium chloride, and lentiviral­mediated silencing of FOXM1 confirmed a role for this factor in the cisplatin resistance of MG63 cells. In nude mice, cadmium chloride enhanced the sensitivity of osteosarcoma to cisplatin, an effect mediated by FOXM1. Collectively, these data indicate that cadmium chloride can alter the sensitivity of osteosarcoma cells to cisplatin through FOXM1, highlighting it as a potential therapeutic target and prognostic factor for osteosarcoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Óseas/tratamiento farmacológico , Cloruro de Cadmio/farmacología , Proteína Forkhead Box M1/metabolismo , Osteosarcoma/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Cloruro de Cadmio/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Ratones , Osteosarcoma/genética , Osteosarcoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Front Chem ; 8: 310, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411664

RESUMEN

Naphthalene diimide (NDI)-based polymer N2200 is a promising organic polymer acceptor for all-polymer solar cells (all-PSCs), but its inherent shortcomings like poor extinction coefficient and strong aggregation limit further performance optimization of all-PSCs. Here, a series of random copolymers, PNDI-Px, were designed and synthesized by introducing porphyrin unit into NDI-based polymer as acceptors for all-PSCs. These random copolymers show a higher absorption coefficient and raised the lowest unoccupied molecular orbital (LUMO) energy levels compared to N2200. The crystallinity can also be fine-tuned by regulation of the content of porphyrin unit. The random copolymers are matched with polymer donor PBDB-T for the application in all-polymer solar cells. The best power conversion efficiency (PCE) of these PNDI-Px-based devices is 5.93%, ascribed to the overall enhanced device parameters compared with the N2200-based device. These results indicate that introducing porphyrin unit into polymer is a useful way to fine-tune the photoelectric performance for efficient all-PSCs.

7.
Am J Transl Res ; 10(6): 1713-1721, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018712

RESUMEN

Radiotherapy is an important method for cancer treatment but it has serious side-effects at high doses. One of the greatest challenges in radiotherapy is that radiation affects both healthy tissue and cancer tissues. For abdominal or pelvic lesions, the bowel is the most easily injured by irradiation. Radiation may cause radiation enteritis, intestinal inflammatory infiltration, or intestinal perforation. Coenzyme NADH involves in energy metabolism and transportation of nucleic acid, proteins and carbohydrates. In our study, NADH was used to protect the intestinal wall from irradiation injury in IEC-6 normal intestinal epithelial cells. By flow cytometry, we found that NADH can inhibit the cell death and the producing of reactive oxygen species (ROS). The immunofluorescence assay showed that cell autophagy was increased in the NADH group. Western blot data indicated that NADH promoted the microtubule associated protein 1A/1B-light chain 3(LC3)-I to LC3II and the expression of IL-1ß and TNFα decreased in a dose dependent manner. Interestingly, a specific PI3K/AKT inhibitor (3MA) decreased the expression of inflammatory factors. In the animal experiment, after 12 Gy radiation, there were less TNFα and more LC3II in the RT+NADH group than that of RT group. Compared with the mock, there was no significant damage in the NADH group. Thus, our study provides the evidence that NADH may protect against radiation enteritis by suppressing inflammation and enhancing autophagy through PI3K/AKT pathway in normal intestinal cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA