Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 72, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233779

RESUMEN

BACKGROUND: Temperature is an important environment factor that is critical to the survival and growth of crustaceans. However, the mechanisms by which crustaceans detect changes in temperature are still unclear. The transient receptor potential (TRP) channels are non-selective cation channels well known for properties in temperature sensation. However, comprehensive understandings on TRP channels as well as their temperature sensing functions are still lacking in crustaceans. RESULTS: In this study, a total of 26 TRP genes were identified in the swimming crab, Portunus trituberculatus, which can be classified into TRPA, TRPC, TRPP, TRPM, TRPML, TRPN and TRPV. Tissue expression analysis revealed a wide distribution of these TRP genes in P. trituberculatus, and antennules, neural tissues, and ovaries were the most commonly expressed tissues. To investigate the responsiveness of TRP genes to the temperature change, 18 TRPs were selected to detect their expression after high and low temperature stress. The results showed that 12 TRPs showed induced gene expression in both high and low temperature groups, while 3 were down-regulated in the low temperature group, and 3 showed no change in expression in either group. CONCLUSIONS: This study characterized the TRP family genes in P. trituberculatus, and explored their involvement in response to temperature stress. Our results will enhance overall understanding of crustacean TRP channels and their possible functions.


Asunto(s)
Braquiuros , Canales de Potencial de Receptor Transitorio , Animales , Canales de Potencial de Receptor Transitorio/genética , Braquiuros/genética , Temperatura , Natación
2.
Dev Growth Differ ; 66(4): 274-284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501505

RESUMEN

Oviposition is induced upon mating in most insects. Spawning is a physiological process that is fundamental for the reproduction of Scylla paramamosain. However, the molecular mechanisms underlying the spawning process in this species are poorly understood. Herein, comprehensive ovary transcriptomic analysis was conducted at the germinal vesicle breakdown stage (GVBD), spawning stage, 0.5 h post-spawning stage, and 24 h post-spawning stage of S. paramamosain for gene discovery. A total of 67,230 unigenes were generated, and 27,975 (41.61%) unigenes were annotated. Meanwhile, the differentially expressed genes (DEGs) between the different groups were identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was subsequently conducted. These results suggested that octopamine (OA) and tyramine (TA) could induce oviposition, while dopamine (DA) and serotonin (5-hydroxytryptamine [5-HT]) inhibit oviposition. The 20-hydroxyecdysone (20E) and methyl farnesoate (MF) signal pathways might be positively associated with oviposition. Furthermore, numerous transcripts that encode neuropeptides and their G-protein-coupled receptors (GPCRs), such as CNMamide, RYamide, ecdysis-triggering hormone (ETH), GPA2/GPB5 receptor, and Moody receptor, appear to be differentially expressed during the spawning process. Eleven unigenes were selected for qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our work is the first spawning-related investigation of S. paramamosain focusing on the ovary at the whole transcriptome level. These findings assist in improving our understanding of spawning regulation in S. paramamosain and provide information for oviposition studies in other crustaceans.


Asunto(s)
Braquiuros , Ovario , Transcriptoma , Animales , Femenino , Braquiuros/genética , Braquiuros/fisiología , Braquiuros/metabolismo , Transcriptoma/genética , Ovario/metabolismo , Perfilación de la Expresión Génica , Oviposición/genética , Oviposición/fisiología , Reproducción/genética , Reproducción/fisiología
3.
Cell Commun Signal ; 22(1): 98, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317235

RESUMEN

NRAS mutations are most frequently observed in hematological malignancies and are also common in some solid tumors such as melanoma and colon cancer. Despite its pivotal role in oncogenesis, no effective therapies targeting NRAS has been developed. Targeting NRAS localization to the plasma membrane (PM) is a promising strategy for cancer therapy, as its signaling requires PM localization. However, the process governing NRAS translocation from the Golgi apparatus to the PM after lipid modification remains elusive. This study identifies GOLGA7 as a crucial factor controlling NRAS' PM translocation, demonstrating that its depletion blocks NRAS, but not HRAS, KRAS4A and KRAS4B, translocating to PM. GOLGA7 is known to stabilize the palmitoyltransferase ZDHHC9 for NRAS and HRAS palmitoylation, but we found that GOLGA7 depletion does not affect NRAS' palmitoylation level. Further studies show that loss of GOLGA7 disrupts NRAS anterograde trafficking, leading to its cis-Golgi accumulation. Remarkably, depleting GOLGA7 effectively inhibits cell proliferation in multiple NRAS-mutant cancer cell lines and attenuates NRASG12D-induced oncogenic transformation in vivo. These findings elucidate a specific intracellular trafficking route for NRAS under GOLGA7 regulation, highlighting GOLGA7 as a promising therapeutic target for NRAS-driven cancers.


Asunto(s)
Lipoilación , Transducción de Señal , Membrana Celular/metabolismo , Línea Celular , Mutación , Aparato de Golgi/metabolismo
4.
J Nanobiotechnology ; 22(1): 131, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532389

RESUMEN

Effective intracellular DNA transfection is imperative for cell-based therapy and gene therapy. Conventional gene transfection methods, including biochemical carriers, physical electroporation and microinjection, face challenges such as cell type dependency, low efficiency, safety concerns, and technical complexity. Nanoneedle arrays have emerged as a promising avenue for improving cellular nucleic acid delivery through direct penetration of the cell membrane, bypassing endocytosis and endosome escape processes. Nanostraws (NS), characterized by their hollow tubular structure, offer the advantage of flexible solution delivery compared to solid nanoneedles. However, NS struggle to stably self-penetrate the cell membrane, resulting in limited delivery efficiency. Coupling with extra physiochemical perforation strategies is a viable approach to improve their performance. This study systematically compared the efficiency of NS coupled with polyethylenimine (PEI) chemical modification, mechanical force, photothermal effect, and electric field on cell membrane perforation and DNA transfection. The results indicate that coupling NS with PEI modification, mechanical force, photothermal effects provide limited enhancement effects. In contrast, NS-electric field coupling significantly improves intracellular DNA transfection efficiency. This work demonstrates that NS serve as a versatile platform capable of integrating various physicochemical strategies, while electric field coupling stands out as a form worthy of primary consideration for efficient DNA transfection.


Asunto(s)
ADN , Electroporación , Transfección , Membrana Celular , Terapia Genética , Polietileneimina/química
5.
Ecotoxicol Environ Saf ; 274: 116210, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479311

RESUMEN

Thiosulfate influences the bioreduction and migration transformation of arsenic (As) and iron (Fe) in groundwater environments. The aim of this study was to investigate the impact of microbially-mediated sulfur cycling on the bioreduction and interaction of As and Fe. Microcosm experiments were conducted, including bioreduction of thiosulfate, As(V), and Fe(III) by Citrobacter sp. JH012-1, as well as the influence of thiosulfate input at different initial arsenate concentrations on the bioreduction of As(V) and Fe(III). The results demonstrate that Citrobacter sp. JH012-1 exhibited strong reduction capabilities for thiosulfate, As(V), and Fe(III). Improving thiosulfate level promoted the bioreduction of Fe(III) and As(V). When 0, 0.1, 0.5, and 1 mM thiosulfate were added, Fe(III) was completely reduced within 9 days, 3 days, 1 day, and 0.5 days, simultaneously, 72.8%, 82.2%, 85.5%, and 90.0% of As(V) were reduced, respectively. The products of As(III) binding with sulfide are controlled by the ratio of As-S. When the initial arsenate concentration was 0.025 mM, the addition of thiosulfate resulted in the accumulation of soluble thioarsenite. However, when the initial arsenate level increased to 1 mM, precipitates of orpiment or realgar were formed. In the presence of both arsenic and iron, As(V) significantly inhibits the bioreduction of Fe(III). Under the concentrations of 0, 0.025, and 1 mM As(V), the reduction rates of Fe(III) were 100%, 91%, and 83%, respectively. In this scenario, the sulfide produced by thiosulfate reduction tends to bind with Fe(II) rather than As(III). Therefore, the competition of arsenic-iron and thiosulfate concentration should be considered to study the impact of thiosulfate on arsenic and iron migration and transformation in groundwater.


Asunto(s)
Arsénico , Agua Subterránea , Hierro/análisis , Arsénico/metabolismo , Arseniatos , Tiosulfatos , Oxidación-Reducción , Sulfuros , Compuestos Férricos/metabolismo
6.
Genomics ; 115(6): 110747, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37977331

RESUMEN

Placopecten magellanicus (Gmelin, 1791), a deep-sea Atlantic scallop, holds significant commercial value as a benthic marine bivalve along the northwest Atlantic coast. Recognizing its economic importance, the need to reconstruct its genome assembly becomes apparent, fostering insights into natural resources and generic breeding potential. This study reports a high-quality chromosome-level genome of P. magellanicus, achieved through the integration of Illumina short read sequencing, PacBio HiFi sequencing, and Hi-C sequencing techniques. The resulting assembly spans 1778 Mb with a scaffold N50 of 86.71 Mb. An intriguing observation arises - the genome size of P. magellanicus surpasses that of its Pectinidae family peers by 1.80 to 2.46 times. Within this genome, 28,111 protein-coding genes were identified. Comparative genomic analysis involving five scallop species unveils the critical determinant of this expanded genome: the proliferation of repetitive sequences recently inserted, contributing to its enlarged size. The landscape of whole genome collinearity sheds light on the relationships among scallop species, enhancing our broader understanding of their genomic framework. This genome provides genomic resources for future molecular biology research on scallops and serves as a guide for the exploration of longevity-related genes in scallops.


Asunto(s)
Bivalvos , Pectinidae , Animales , Pectinidae/genética , Bivalvos/genética , Alimentos Marinos , Tamaño del Genoma , Cromosomas/genética
7.
J Clin Nurs ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867609

RESUMEN

AIMS: To investigate the prevalence of physical inactivity in older adults living in nursing homes and explore the determinants of physical inactivity by using the Capability, Opportunity, Motivation-Behaviour model. DESIGN: A multisite, cross-sectional study was performed by convenience sampling and questionnaire survey. METHODS: A total of 390 nursing home residents were recruited from three nursing homes in Southern China from May 2022 to April 2023. The participants completed a self-designed general information questionnaire, Physical Activity Scale for the Elderly, Self-Efficacy for Exercise Scale, Exercise Benefits Scale, Patient Health Questionnaire-9 and the Short Physical Performance Battery test. Descriptive statistics, univariate analysis, Spearman correlation analysis, and ordinal logistic regression were applied for data analysis. RESULTS: The prevalence of physical inactivity among the nursing home residents reached 88.46%. Ordinal logistic regression results showed that exercise self-efficacy, perceived exercise benefits, physical function, availability of physical activity instruction, having depression, number of chronic diseases and living with spouse were the main influencing determinants of physical inactivity and explained 63.7% of the variance. CONCLUSIONS: Physical inactivity was considerable in nursing home residents in China and influenced by complex factors. Tailored measures should be designed and implemented based on these factors to enhance physical activity while considering the uniqueness of Chinese culture. IMPLICATIONS FOR THE PROFESSION AND PATIENT CARE: Healthcare professionals should enhance physical activity of residents by increasing benefits understanding, boosting self-efficacy, improving physical function, alleviating depression and integrating personalized physical activity guidance into routine care services. And more attention should be paid to the residents who had more chronic diseases or did not live with spouse. IMPACT: Physical inactivity is a significant problem in nursing home residents. Understanding physical inactivity and its determinants enables the development of tailored interventions to enhance their physical activity level. REPORTING METHOD: This study was reported conforming to the STROBE statement. PATIENTS OR PUBLIC CONTRIBUTION: Nursing home residents who met the inclusion criteria were recruited.

8.
J Environ Manage ; 353: 120168, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38278111

RESUMEN

Arsenic (As)-immobilizing iron (Fe)-manganese (Mn) minerals (AFMM) represent potential As sinks in As-enriched groundwater environments. The process and mechanisms governing As bio-leaching from AFMM through interaction with reducing bacteria, however, remain poorly delineated. This study examined the transformation and release of As from AFMM with varying Mn/Fe molar ratios (0:1, 1:5, 1:3, and 1:1) in the presence of As(V)-reducing bacteria specifically Shewanella putrefaciens CN32. Notably, strain CN32 significantly facilitated the bio-reduction of As(V), Fe(III), and Mn(IV) in AFMM. In systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1, As bio-reduction decreased by 28%, 34%, and 47%, respectively, compared to the system with a 0:1 ratio. This Mn-induced inhibition of Fe/As bio-reduction was linked to several concurrent factors: preferential Mn bio-reduction, reoxidation of resultant Fe(II)/As(III) due to Mn components, and As adsorption onto emergent Fe precipitates. Both the reductive dissolution of AFMM and the bio-reduction of As(V) predominantly controlled As bio-release. Structural equation models indicated that reducing bacteria destabilize natural As sinks more through As reduction than through Mn(II) release, Fe reduction, or Fe(II) release. Systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1 showed a decrease in As bio-release by 24%, 41%, and 59%, respectively, relative to the 0:1 system. The observed suppression of As bioleaching was ascribed to both the inhibition of As/Fe bio-reduction by Mn components and the immobilization of As by freshly generated Fe precipitates. These insights into the constraining effect of Mn on the biotransformation and bioleaching of As from AFMM are crucial for grasping the long-term stability of natural As sinks in groundwater, and enhance strategies for in-situ As stabilization in As-afflicted aquifers through Nature-Based Solutions.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Manganeso/análisis , Arsénico/química , Compuestos Férricos/química , Minerales/química , Agua Subterránea/química , Bacterias , Compuestos Ferrosos , Oxidación-Reducción , Contaminantes Químicos del Agua/química
9.
Compr Rev Food Sci Food Saf ; 23(1): e13290, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284591

RESUMEN

Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.


Asunto(s)
Manipulación de Alimentos , Conservación de Alimentos , Calidad de los Alimentos , Valor Nutritivo , Inocuidad de los Alimentos
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 256-265, 2024 Feb 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38755721

RESUMEN

OBJECTIVES: Given the high incidence and mortality rate of sepsis, early identification of high-risk patients and timely intervention are crucial. However, existing mortality risk prediction models still have shortcomings in terms of operation, applicability, and evaluation on long-term prognosis. This study aims to investigate the risk factors for death in patients with sepsis, and to construct the prediction model of short-term and long-term mortality risk. METHODS: Patients meeting sepsis 3.0 diagnostic criteria were selected from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database and randomly divided into a modeling group and a validation group at a ratio of 7꞉3. Baseline data of patients were analyzed. Univariate Cox regression analysis and full subset regression were used to determine the risk factors of death in patients with sepsis and to screen out the variables to construct the prediction model. The time-dependent area under the curve (AUC), calibration curve, and decision curve were used to evaluate the differentiation, calibration, and clinical practicability of the model. RESULTS: A total of 14 240 patients with sepsis were included in our study. The 28-day and 1-year mortality were 21.45% (3 054 cases) and 36.50% (5 198 cases), respectively. Advanced age, female, high sepsis-related organ failure assessment (SOFA) score, high simplified acute physiology score II (SAPS II), rapid heart rate, rapid respiratory rate, septic shock, congestive heart failure, chronic obstructive pulmonary disease, liver disease, kidney disease, diabetes, malignant tumor, high white blood cell count (WBC), long prothrombin time (PT), and high serum creatinine (SCr) levels were all risk factors for sepsis death (all P<0.05). Eight variables, including PT, respiratory rate, body temperature, malignant tumor, liver disease, septic shock, SAPS II, and age were used to construct the model. The AUCs for 28-day and 1-year survival were 0.717 (95% CI 0.710 to 0.724) and 0.716 (95% CI 0.707 to 0.725), respectively. The calibration curve and decision curve showed that the model had good calibration degree and clinical application value. CONCLUSIONS: The short-term and long-term mortality risk prediction models of patients with sepsis based on the MIMIC-IV database have good recognition ability and certain clinical reference significance for prognostic risk assessment and intervention treatment of patients.


Asunto(s)
Sepsis , Humanos , Sepsis/mortalidad , Sepsis/diagnóstico , Femenino , Masculino , Factores de Riesgo , Pronóstico , Bases de Datos Factuales , Medición de Riesgo/métodos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Persona de Mediana Edad , Área Bajo la Curva , Anciano , Puntuaciones en la Disfunción de Órganos , Modelos de Riesgos Proporcionales
11.
Angew Chem Int Ed Engl ; 63(5): e202315537, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38081781

RESUMEN

The ion/chemical-based modulation feature of organic mixed ionic-electronic conductors (OMIECs) are critical to advancing next generation bio-integrated neuromorphic hardware. Despite achievements with polymeric OMIECs in organic electrochemical neuronal synapse (OENS). However, small molecule OMIECs based OENS has not yet been realized. Here, for the first time, we demonstrate an effective materials design concept of combining n-type fused all-acceptor small molecule OMIECs with subtle side chain optimization that enables robustly and flexibly modulating versatile synaptic behavior and sensing neurotransmitter in solid or aqueous electrolyte, operating in accumulation modes. By judicious tuning the ending side chains, the linear oligoether and butyl chain derivative gNR-Bu exhibits higher recognition accuracy for a model artificial neural network (ANN) simulation, higher steady conductance states and more outstanding ambient stability, which is superior to the state-of-art n-type OMIECs based OENS. These superior artificial synapse characteristics of gNR-Bu can be attributed to its higher crystallinity with stronger ion bonding capacities. More impressively, we unprecedentedly realized n-type small-molecule OMIECs based OENS as a neuromorphic biosensor enabling to respond synaptic communication signals of dopamine even at sub-µM level in aqueous electrolyte. This work may open a new path of small-molecule ion-electron conductors for next-generation ANN and bioelectronics.

12.
Small ; 19(43): e2303088, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381646

RESUMEN

The utilization of dendritic cell (DC) vaccines is a promising approach in cancer immunotherapy, and the modification of DCs for the expression of tumor-associated antigens is critical for successful cancer immunotherapy. A safe and efficient method for delivering DNA/RNA into DCs without inducing maturation is beneficial to achieve successful DC transformation for cell vaccine applications, yet remains challenging. This work presents a nanochannel electro-injection (NEI) system for the safe and efficient delivery of a variety of nucleic acid molecules into DCs. The device is based on track-etched nanochannel membrane as key components, where the nano-sized channels localize the electric field on the cell membrane, enabling lower voltage (<30 V) for cell electroporation. The pulse conditions of NEI are examined so that the transfection efficiency (>70%) and biosafety (viability >85%) on delivering fluorescent dyes, plasmid DNA, messenger RNA, and circular RNA (circRNA) into DC2.4 are optimized. Primary mouse bone marrow DC can also be transfected with circRNA with 68.3% efficiency, but without remarkably affecting cellular viability or inducing DC maturation. These results suggest that NEI can be a safe and efficient transfection platform for in vitro transformation of DCs and possesses a promising potential for developing DC vaccines against cancer.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas , Animales , Ratones , ARN , ARN Circular/metabolismo , Transfección , Células Dendríticas/metabolismo , Neoplasias/metabolismo , ADN/metabolismo
13.
J Med Virol ; 95(1): e28307, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372774

RESUMEN

Recently, varicella-zoster virus (VZV) reactivation has been observed after the administration of coronavirus disease 2019 (COVID-19) vaccines. Autoimmune inflammatory rheumatic diseases (AIIRDs) patients are at a higher risk for VZV reactivation for immunocompromised status. The study aimed to investigate the adverse events (AEs), especially VZV reactivation, following vaccination against  severe acute respiratory syndrome coronavirus-2 in a Chinese cohort of AIIRD patients. A cross-sectional survey using an online questionnaire was conducted among AIIRD patients and healthy controls (HCs). Multivariate logistic regression was used to identify potential factors associated with VZV reactivation. 318 AIIRD patients and 318 age and sex-matched HCs who got COVID-19 inactivated vaccines were recruited. The main AIIRDs are rheumatoid arthritis (31.8%) and systemic lupus erythematous (23.9%). Most of patients (85.5%) had stable disease and 13.2% of them had aggravation after vaccination. Compared to HCs, patients had higher rates of rash (p = 0.001), arthralgia (p < 0.001) and insomnia (p = 0.007). In addition, there were 6 (1.9%) AIIRD patients and 5 (1.6%) HCs reported VZV reactivation after the COVID-19 vaccination (p = 0.761). Multivariate logistic regression analysis illustrated that diabetes mellitus (odd ratio [OR], 20.69; 95% confidence interval [CI], 1.08-396.79; p = 0.044), chronic hepatitis B virus infection (OR, 24.34; 95% CI, 1.27-466.74; p = 0.034), and mycophenolate mofetil (OR, 40.61; 95% CI, 3.33-496.15; p = 0.004) independently identified patients with VZV reactivation. Our findings showed that the inactivated COVID-19 vaccination was safe for AIIRD patients though some patients could suffer from VZV reactivation.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Hepatitis B Crónica , Herpes Zóster , Enfermedades Reumáticas , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Estudios Transversales , Herpes Zóster/epidemiología , Herpesvirus Humano 3 , Vacunación/efectos adversos
14.
Opt Lett ; 48(23): 6328-6331, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039259

RESUMEN

Light-induced rotation is a fundamental motion form that is of great significance for flexible and multifunctional manipulation modes. However, current optical rotation by a single optical field is mostly unidirectional, where switchable rotation manipulation is still challenging. To address this issue, we demonstrate a switchable rotation of non-spherical nanostructures within a single optical focus field. Interestingly, the intensity of the focus field is chiral invariant. The rotation switch is a result of the energy flux reversal in front and behind the focal plane. We quantitatively analyze the optical force exerted on a metal nanorod at different planes, as well as the surrounding energy flux. Our experimental results indicate that the direct switchover of rotational motion is achievable by adjusting the relative position of the nanostructure to the focal plane. This result enriches the basic motion mode of micro-manipulation and is expected to create potential opportunities in many application fields, such as biological cytology and optical micromachining.

15.
Opt Lett ; 48(24): 6577-6580, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099803

RESUMEN

Due to the sub-diffraction-limited size and giant field enhancement, plasmonic tweezers have a natural advantage in trapping metallic particles. However, the strict excitation condition makes it difficult to generate an arbitrary plasmonic field in a controllable manner, thus narrowing its practical applications. Here, we propose an all-optical plasmonic field shaping method based on a digital holographic algorithm and generate plasmonic vortex arrays with controllable spot numbers, spatial location, and topological charge. Our experimental results demonstrate that multiple gold particles can be stably trapped and synchronously rotated in the vortex arrays, and the particles' kinestate can be dynamically switched. The proposed holographic plasmonic vortex tweezers are suitable for a broadband particle trapping, and this method can be generalized to other surface electromagnetic waves like Bloch surface wave.

16.
Arch Biochem Biophys ; 742: 109636, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230810

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. This article shows significant data duplication and overlap with Liu, Weihua et al., Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury. European Journal of Pharmacology. 2010 Jul 25; 638(1-3):150-5 (https://doi.org/10.1016/j.ejphar.2010.04.033) without adequate referencing. Although there is a slight difference in the methodology section regarding alloxan-induced diabetes models in the two articles, there is a clear overlap between Table 2 of Lan, Tian et al. (2010); and Tables 1 and 2 of Liu, Weihua et al. (2010). The two manuscripts were submitted from the same laboratory in the same year.

17.
Crit Rev Food Sci Nutr ; 63(31): 10959-10973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35648042

RESUMEN

Recent studies have explored the field of extracellular vesicles (EVs), driving an increasing interest in their application to human health. EVs have unique physicochemical traits to participate in intercellular communication, thus fostering the idea of using EVs to yield synergistic, preventive, and therapeutic effects. Many reports have shown that EVs contain natural bioactive compounds, such as lipids, proteins, RNA, and other active components that regulate biological processes, thereby contributing to human health. Therefore, in this review, we comprehensively elucidate various facets of the relationship between EVs and bioactive compounds that modulate EVs contents, including RNAs and proteins, discussing different forms of biological regulation. The use of EVs for cargo-loading bioactive compounds to exert biological functions and methods to load bioactive compounds into EVs are also discussed. This review highlighted the effect of EV-delivered bioactive compounds on several therapeutic mechanisms and applications, providing new insight into nutrition and pharmacology.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Comunicación Celular , Proteínas/metabolismo
18.
Appl Microbiol Biotechnol ; 107(2-3): 971-983, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36622426

RESUMEN

Microalgae are promising feedstock for renewable fuels. The accumulation of oils in microalgae can be enhanced by nanoparticle exposure. However, the nanoparticles employed in previous studies are mostly non-biodegradable, which hinders nanoparticles developing as promising approach for biofuel production. We recently reported the engineered resin nanoparticles (iBCA-NPs), which were found to be biodegradable in this study. When the cells of green microalga Chlamydomonas reinhardtii were exposed to the iBCA-NPs for 1 h, the cellular triacyclglycerols (TAG) and starch contents increased by 520% and 60% than that in the control. The TAG production improved by 1.8-fold compared to the control without compromised starch production. Additionally, the content of total fatty acids increased by 1.3-fold than that in control. Furthermore, we found that the iBCA-NPs addition resulted in increased cellular reactive oxygen species (ROS) content and upregulated the activities of antioxidant enzymes. The relative expressions of the key genes involved in TAG and starch biosynthesis were also upregulated. Overall, our results showed that short exposure of the iBCA-NPs dramatically enhances TAG and starch accumulation in Chlamydomonas, which probably resulted from prompt upregulated expression of the key genes in lipid and starch metabolic pathways that were triggered by over-accumulated ROS. This study reported a useful approach to enhance energy-rich reserve accumulation in microalgae. KEY POINTS: 1. The first attempt to increase oil and starch in microalgae by biodegradable NPs. 2. The biodegradability of iBCA-NPs by the BOD test was more than 50% after 28 days. 3. The iBCA-NPs induce more energy reserves than that of previously reported NPs.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Microalgas , Nanopartículas , Chlamydomonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Almidón/metabolismo , Microalgas/metabolismo
19.
BMC Pregnancy Childbirth ; 23(1): 826, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037027

RESUMEN

BACKGROUND: Interstitial pregnancy may still happen even after ipsilateral salpingectomy, resulting in massive hemorrhage. Therefore, the purpose of the study is to identify risk factors associated with interstitial pregnancy following ipsilateral salpingectomy and discuss possible prevention. METHODS: We conducted a retrospective cohort study in a single, large, university-affiliated hospital. Data of 29 patients diagnosed with interstitial pregnancy following ipsilateral salpingectomy from January 2011 to November 2020 were assigned into the case group (IP group). Whereas there were 6151 patients with intrauterine pregnancy after unilateral salpingectomy in the same period. A sample size of 87 control patients was calculated to achieve statistical power (99.9%) and an α of 0.05. The age, BMI and previous salpingectomy side between the two group were adjusted with PSM at a ratio of 1:3. After PSM, 87 intrauterine pregnancy patients were successfully matched to 29 IP patients. RESULTS: After PSM, parous women were more common and intrauterine operation was more frequent in the IP group compared with control group (P<0.05). There was only one patient undergoing IVF-ET in the IP group as compared with 29 cases in the control group (3.4% vs. 33.3%, P<0.05). Salpingectomy was performed on 5 patients in the IP group and 4 patients in the control group due to hydrosalpinx (P<0.05). Logistic regression indicated that hydrosalpinx was the high risk factor of interstitial pregnancy following ipsilateral salpingectomy (OR = 8.175). CONCLUSIONS: Hydrosalpinx appears to be an independent factor contributing to interstitial pregnancy following ipsilateral salpingectomy in subsequent pregnancy.


Asunto(s)
Embarazo Intersticial , Salpingitis , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Fertilización In Vitro/métodos , Transferencia de Embrión/efectos adversos , Índice de Embarazo , Estudios de Casos y Controles , Salpingectomía/efectos adversos , Salpingitis/complicaciones , Factores de Riesgo
20.
Proc Natl Acad Sci U S A ; 117(44): 27154-27161, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087567

RESUMEN

Titanium carbide (Ti3C2Tx) MXene has great potential for use in aerospace and flexible electronics due to its excellent electrical conductivity and mechanical properties. However, the assembly of MXene nanosheets into macroscopic high-performance nanocomposites is challenging, limiting MXene's practical applications. Here we describe our work fabricating strong and highly conductive MXene sheets through sequential bridging of hydrogen and ionic bonding. The ionic bonding agent decreases interplanar spacing and increases MXene nanosheet alignment, while the hydrogen bonding agent increases interplanar spacing and decreases MXene nanosheet alignment. Successive application of hydrogen and ionic bonding agents optimizes toughness, tensile strength, oxidation resistance in a humid environment, and resistance to sonication disintegration and mechanical abuse. The tensile strength of these MXene sheets reaches up to 436 MPa. The electrical conductivity and weight-normalized shielding efficiency are also as high as 2,988 S/cm and 58,929 dB∙cm2/g, respectively. The toughening and strengthening mechanisms are revealed by molecular-dynamics simulations. Our sequential bridging strategy opens an avenue for the assembly of other high-performance MXene nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA