Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Stress ; 30: 100632, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38601361

RESUMEN

The involvement of lipids in the mechanism of depression has triggered extensive discussions. Earlier studies have identified diminished levels of lysophosphatidic acid (LPA) and autotaxin (ATX) in individuals experiencing depression. However, the exact significance of this phenomenon in relation to depression remains inconclusive. This study seeks to explore the deeper implications of these observations. We assessed alterations in ATX and LPA in both the control group and the chronic unpredictable mild stress (CUMS) model group. Additionally, the impact of ATX adeno-associated virus (AAV-ATX) injection into the hippocampus was validated through behavioral tests in CUMS-exposed mice. Furthermore, we probed the effects of LPA on synapse-associated proteins both in HT22 cells and within the mouse hippocampus. The mechanisms underpinning the LPA-triggered shifts in protein expression were further scrutinized. Hippocampal tissues were augmented with ATX to assess its potential to alleviate depression-like behavior by modulating synaptic-related proteins. Our findings suggest that the decrement in ATX and LPA levels alters the expression of proteins associated with synaptic plasticity in vitro and in vivo, such as synapsin-I (SYN), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Moreover, we discerned a role for the ERK/CREB signaling pathway in mediating the effects of ATX and LPA. Importantly, strategic supplementation of ATX effectively mitigated depression-like behaviors. This study indicates that the ATX-LPA pathway may influence depression-like behaviors by modulating synaptic plasticity in the brains of CUMS-exposed mice. These insights augment our understanding of depression's potential pathogenic mechanism in the context of lipid metabolism and propose promising therapeutic strategies for ameliorating the disease.

2.
Brain Stimul ; 17(1): 19-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38101468

RESUMEN

BACKGROUND: The neurogenesis hypothesis is a promising candidate etiologic hypothesis for depression, and it is associated with electroconvulsive therapy (ECT). However, human in vivo molecular-level evidence is lacking. OBJECTIVE: We used neuron-derived extracellular vesicles (NDEVs) as a "window to the neurons" to explore the in vivo neurogenesis status associated with ECT in patients with treatment-resistant depression (TRD). METHODS: In this study, we enrolled 40 patients with TRD and 35 healthy controls (HCs). We isolated NDEVs from the plasma of each participant to test the levels of doublecortin (DCX), a marker of neurogenesis, and cluster of differentiation (CD) 81, a marker of EVs. We also assessed the plasma levels of brain-derived neurotrophic factor (BDNF), a protein that is known to be associated with ECT and neuroplastic processes. RESULTS: Our findings indicated that both the levels of DCX in NDEVs and BDNF in plasma were significantly lower in TRD patients compared to HCs at baseline, but increased following ECTs. Conversely, levels of CD81 in NDEVs were found higher in TRD patients at baseline, but did not change after the ECT treatments. Exploratory analyses revealed that lower levels of BDNF in plasma and DCX in NDEVs, along with higher CD81 levels in NDEVs, were associated with more severe depressive symptoms and reduced cognitive function at baseline. Furthermore, higher baseline CD81 concentrations in NDEVs were correlated with greater decreases in depression symptoms. CONCLUSIONS: We first present human in vivo evidence of early neurogenesis using DCX through NDEVs: decreased in TRD patients, increased after ECTs.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Terapia Electroconvulsiva , Humanos , Factor Neurotrófico Derivado del Encéfalo , Depresión/terapia , Resultado del Tratamiento , Trastorno Depresivo Resistente al Tratamiento/terapia
3.
Neuroscience ; 542: 1-10, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38342336

RESUMEN

Many central nervous system diseases are closely related to nerve damage caused by dysregulation of the endogenous neurotransmitter glutamate. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) play an important role in improving injury and regeneration functions. However, its mechanism remains unknown. Therefore, the aim of this study is to investigate whether and how BMSC-Exos improve neurotoxicity caused by glutamate and to fill the gap in the literature. In this study, glutamate-treated HT22 cells were first exposed to mouse-derived BMSC-Exos at different concentrations to observe their effects on HT22 apoptosis. Next, we treated glutamate-treated HT22 cells with mouse-derived BMSC-Exos. We then inhibited the PI3K/Akt/mTOR signaling pathways using the PI3K/Akt inhibitor and the mTOR inhibitor, respectively, and observed the protective effect of mouse-derived BMSC-Exos on HT22 cells treated with glutamate. Our results show that BMSC-Exos reduced apoptosis triggered by glutamate stimulation, increased cell vitality, and decreased the levels of proapoptotic proteins while increasing the levels of anti-apoptotic proteins. The protective effect of BMSC-Exos was weakened when PI3K/Akt inhibitor and mTOR inhibitor were added. To sum up, we draw the following conclusions: BMSC-Exos can reduce neuronal apoptosis and apoptosis-related protein expression after glutamate stimulation by regulating the PI3K/Akt/mTOR signaling pathway.


Asunto(s)
Exosomas , MicroARNs , Fármacos Neuroprotectores , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Exosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , MicroARNs/metabolismo
4.
Schizophr Res ; 264: 113-121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128342

RESUMEN

OBJECTIVE: Coronary artery calcification (CAC) is a well-established independent predictor of coronary heart disease, and patients with schizophrenia have significantly higher rates compared to the general population. We performed this study to examine the population-specific risk factors associated with CAC in patients with schizophrenia. METHODS: In this cross-sectional study, patients with schizophrenia who underwent low-dose chest CT scans between January 2020 and December 2021 were analyzed. Ordinary CAC scores and results of routine blood tests were obtained. Logistic regression was used to calculate the odds ratio (OR) for potential risk factors in patients with and without CAC, while the negative binomial additive model was used to explore the dose-response relationship between risk factors and CAC score. RESULTS: Of the 916 patients, 233 (25.4 %) had CAC, while 683 (74.6 %) did not. After adjusting for confounding factors, higher triglyceride levels (OR = 1.20, 95 % confidence interval (CI): 1.04 to 1.38, p = 0.013) and low triiodothyronine levels (OR = 0.50, 95 % CI: 0.29 to 0.84; p = 0.010) were identified as risk factors for CAC. Both triglycerides (p = 0.021) and triiodothyronine (p = 0.010) were also found to have significant dose-response relationships with CAC scores according to the negative binomial additive model in the exploratory analysis. CONCLUSIONS: This study highlights elevated serum triglycerides and decreased triiodothyronine levels as population-specific risk factors for CAC in patients with schizophrenia, suggest the need for close monitoring of CAC in patients with schizophrenia and further prospective trials to provide additional evidence on this topic.


Asunto(s)
Enfermedad de la Arteria Coronaria , Esquizofrenia , Humanos , Triyodotironina , Estudios Transversales , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/epidemiología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/epidemiología , Factores de Riesgo , Triglicéridos
5.
CNS Neurosci Ther ; 30(3): e14661, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38439616

RESUMEN

AIMS: To investigate the antidepressant role of oligodendrocyte-derived exosomes (ODEXs)-containing sirtuin 2 (SIRT2) and the underlying mechanism both in vivo and in vitro. METHODS: Oligodendrocyte-derived exosomes isolated from mouse serum were administered to mice with chronic unpredictable mild stress (CUMS)-induced depression via the tail vein. The antidepressant effects of ODEXs were assessed through behavioral tests and quantification of alterations in hippocampal neuroplasticity. The role of SIRT2 was confirmed using the selective inhibitor AK-7. Neural stem/progenitor cells (NSPCs) were used to further validate the impact of overexpressed SIRT2 and ODEXs on neurogenesis and synapse formation in vitro. RESULTS: Oligodendrocyte-derived exosome treatment alleviated depressive-like behaviors and restored neurogenesis and synaptic plasticity in CUMS mice. SIRT2 was enriched in ODEXs, and blocking SIRT2 with AK-7 reversed the antidepressant effects of ODEXs. SIRT2 overexpression was sufficient to enhance neurogenesis and synaptic protein expression. Mechanistically, ODEXs mediated transcellular delivery of SIRT2, targeting AKT deacetylation and AKT/GSK-3ß signaling to regulate neuroplasticity. CONCLUSION: This study establishes how ODEXs improve depressive-like behaviors and hippocampal neuroplasticity and might provide a promising therapeutic approach for depression.


Asunto(s)
Exosomas , Animales , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Hipocampo , Neurogénesis , Plasticidad Neuronal , Oligodendroglía , Proteínas Proto-Oncogénicas c-akt , Sirtuina 2
6.
Psychiatry Investig ; 21(7): 772-781, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39089703

RESUMEN

OBJECTIVE: Patients with late life depression sometimes refuse to receive electroconvulsive therapy (ECT) owing to its adverse reactions. To alleviate patient's resistance, a novel ECT stimulation strategy named mixed-strategy ECT (msECT) was designed in which patients are administered conventional ECT during the first three sessions, followed by low energy stimulation during the subsequent sessions. However, whether low energy electrical stimulation in the subsequent stage of therapy affect its efficacy and reduce adverse reactions in patients with late life depression remains unknown. To explore differences between msECT and regular ECT(RECT) with respect to clinical efficacy and side effects. METHODS: This randomized, controlled trial was conducted from 2019 to 2021 on 60 patients with late life depression who were randomly assigned to two groups: RECT or msECT. A generalized estimating equation (GEE) was used to compare the two stimulation strategies regarding their efficacy and side effects on cognition. Chi-squared test was used to compare side effects in the two strategies. RESULTS: In the intent-to-treat group, the GEE model suggested no differences between-group difference in Hamilton Depression Rating Scale-17 score over time (Wald χ2=7.275, p=0.064), whereas the comparison of side effects in the two strategies favored msECT (Wald χ2=8.463, p=0.015) as fewer patients had adverse events during the second phase of treatment with msECT (χ2 =13.467, p=0.004). CONCLUSION: msECT presents its similar efficacy to RECT. msECT may have milder side effects on cognition.

7.
Front Psychiatry ; 14: 1324911, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274426

RESUMEN

Objective: To assess the interplay among psychopathological symptoms and real-life functioning, and to further detect their influence with violent behavior in patient with schizophrenia. Methods: A sample of 1,664 patients with post-violence assessments and their propensity score-matched controls without violence from a disease registration report system of community mental health service in Guangdong, China, were studied by network analysis. Ising-Model was used to estimate networks of psychopathological symptoms and real-life functioning. Then, we tested whether network properties indicated the patterns of interaction were different between cases and controls, and calculated centrality indices of each node to identify the central nodes. Sensitivity analysis was conducted to examine the difference of interaction patterns between pre-violence and post-violence assessments in violence cases. Results: Some nodes in the same domain were highly positive interrelations, while psychopathological symptoms were negatively related to real-life functioning in all networks. Many symptom-symptom connections and symptom-functioning connections were disconnected after the violence. The network density decreased from 23.53% to 12.42% without statistical significance (p = 0.338). The network structure, the global network strength, and the global clustering coefficient decreased significantly after the violence (p < 0.001, p = 0.019, and p = 0.045, respectively). Real-life functioning had a higher node strength. The strength of sleeping, lack of spontaneity and flow of conversation, and preoccupation were decreased in post-violence network of patients. Conclusion: The decreasing connectivity may indicate an increased risk of violence and early warning for detecting violence. Interventions and improving health state based on nodes with high strength might prevent violence in schizophrenia patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA