Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Cell Rep ; 43(4): 99, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494540

RESUMEN

KEY MESSAGE: In this manuscript, authors reviewed and explore the information on beneficial role of phytohormones to mitigate adverse effects of heavy metals toxicity in plants. Global farming systems are seriously threatened by heavy metals (HMs) toxicity, which can result in decreased crop yields, impaired food safety, and negative environmental effects. A rise in curiosity has been shown recently in creating sustainable methods to reduce HMs toxicity in plants and improve agricultural productivity. To accomplish this, phytohormones, which play a crucial role in controlling plant development and adaptations to stress, have emerged as intriguing possibilities. With a particular focus on environmentally friendly farming methods, the current review provides an overview of phytohormone-mediated strategies for reducing HMs toxicity in plants. Several physiological and biochemical activities, including metal uptake, translocation, detoxification, and stress tolerance, are mediated by phytohormones, such as melatonin, auxin, gibberellin, cytokinin, ethylene, abscisic acid, salicylic acid, and jasmonates. The current review offers thorough explanations of the ways in which phytohormones respond to HMs to help plants detoxify and strengthen their resilience to metal stress. It is crucial to explore the potential uses of phytohormones as long-term solutions for reducing the harmful effects of HMs in plants. These include accelerating phytoextraction, decreasing metal redistribution to edible plant portions, increasing plant tolerance to HMs by hormonal manipulation, and boosting metal sequestration in roots. These methods seek to increase plant resistance to HMs stress while supporting environmentally friendly agricultural output. In conclusion, phytohormones present potential ways to reduce the toxicity of HMs in plants, thus promoting sustainable agriculture.


Asunto(s)
Metales Pesados , Reguladores del Crecimiento de las Plantas , Ácido Abscísico , Citocininas , Giberelinas , Metales Pesados/toxicidad
2.
Europace ; 26(1)2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38099508

RESUMEN

AIMS: Patients with heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) have worse clinical outcomes than those with sinus rhythm (SR). We aim to investigate whether maintaining SR in patients with HFpEF through a strategy such as AF ablation would improve outcomes. METHODS AND RESULTS: This is a cohort study that analysed 1034 patients (median age 69 [63-76] years, 46.2% [478/1034] female) with HFpEF and AF. Of these, 392 patients who underwent first-time AF ablation were assigned to the ablation group, and the remaining 642 patients, who received only medical therapy, were assigned to the no ablation group. The primary endpoint was a composite of all-cause death or rehospitalization for worsening heart failure. After a median follow-up of 39 months, the cumulative incidence of the primary endpoint was significantly lower in the ablation group compared to the no ablation group (adjusted hazard ratio [HR], 0.55 [95% CI, 0.37-0.82], P = 0.003) in the propensity score-matched model. Secondary endpoint analysis showed that the benefit of AF ablation was mainly driven by a reduction in rehospitalization for worsening heart failure (adjusted HR, 0.52 [95% CI, 0.34-0.80], P = 0.003). Patients in the ablation group showed a 33% relative decrease in atrial tachycardia/AF recurrence compared to the no ablation group (adjusted HR, 0.67 [95% CI, 0.54-0.84], P < 0.001). CONCLUSION: Among patients with HFpEF and AF, the strategy of AF ablation to maintain SR was associated with a lower risk of the composite outcome of all-cause death or rehospitalization for worsening heart failure.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Humanos , Femenino , Anciano , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Fibrilación Atrial/complicaciones , Estudios de Cohortes , Volumen Sistólico/fisiología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/cirugía , Insuficiencia Cardíaca/complicaciones , Factores de Riesgo
3.
J Environ Manage ; 305: 114387, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968940

RESUMEN

Composting is suitable for recycling livestock manure into valuable organic fertilizer, which can improve soil quality while mitigating potential risk of heavy metal pollution. Humic substances (HS) in compost have been demonstrated to play a key role in regulating the redistribution of heavy metal fractions. However, limited direct information have been reported on how different components of HS complexes with heavy metals to affect their bioavailability during composting. In this study, sequential extraction procedures (H2O, KCl, Na4P2O7, NaOH and HNO3) were used to assess the characteristics that HS bound with Cu and Zn during composting of swine manure and straw added either 5% boron waste (BW) or 5% phosphate rock (PR). Organically complexed fraction extracted by Na4P2O7 contained only 33-41% of the Cu but most of the Zn (81-87%). During composting, initially mobile fractions of Cu and Zn (extracted by H2O or KCl) changed into more stable fractions (extracted by NaOH and HNO3), and both organic matter and fulvic acids (FA) were identified as critical factors to explain this redistribution based on redundancy analysis. Over 80% of Cu and Zn were complexed with FA of HS. However, exogenous additives (phosphate rock and boron waste) enhanced Cu conversion by promoting humification (Humic acid/Fulvic acids, HA/FA) whereas they had limited influence on Zn, due to the relatively weak binding relationship between Zn and HA.


Asunto(s)
Compostaje , Metales Pesados , Animales , Sustancias Húmicas/análisis , Estiércol , Metales Pesados/análisis , Minerales , Suelo , Porcinos , Zinc
4.
Environ Res ; 197: 111123, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823194

RESUMEN

BACKGROUND: Long-term exposure to ambient and household particulate matter (PM2.5) causes death and health loss, and both are the leading risk factor to global disease burden. We assessed spatiotemporal trends of ambient and household PM2.5 attributable burdens across various diseases at the global, regional, and national levels from 1990 to 2017. METHODS: Data on PM2.5-attributable disease burdens were extracted from the Global Burden of Disease (GBD) study 2017. Numbers and age-standardized rates (ASRs) of deaths, disability-adjusted life years (DALYs) and corresponding estimated annual percentage change (EAPC) were estimated by disease, age, sex, Socio-demographic Index (SDI), locations. RESULTS: Exposure to PM2.5 contributed to 4.58 million deaths and 142.52 million DALYs globally in 2017, among which ambient PM2.5 contributed to 64.2% deaths and 58.3% DALYs. ASRs of deaths and DALYs in 2017 decreased to 59.62/105 persons with an EAPC of -2.15 (95% CI: 2.21 to -2.09) and 1856.61/105 persons with an EAPC of -2.58 (95% CI: 2.64 to -2.51), respectively compared to those in 1990. Ambient PM2.5-attributable Non-communicable diseases (NCDs) have dominated major concern in middle and low SDI countries especially in South Asia and East Asia, while household PM2.5-attributable lower respiratory infections (LRIs) still caused the largest burden in low SDI countries in Africa and Asia. Those under 5 and over 70 years old had the largest burdens in PM2.5 attributable LRI and NCDs, respectively. CONCLUSION: In conclusion, ambient PM2.5-attributable NCDs have threatened public health in middle and low SDI countries, while household PM2.5-attributable LRI still caused the largest burden in low SDI countries. More positive strategies should be tailored to reduce PM2.5-attributable burdens considering specific settings globally.


Asunto(s)
Carga Global de Enfermedades , Salud Global , África , Asia , Asia Oriental , Material Particulado/análisis , Material Particulado/toxicidad , Años de Vida Ajustados por Calidad de Vida , Factores de Riesgo
5.
Lipids Health Dis ; 19(1): 125, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32498720

RESUMEN

BACKGROUND: The endogenous lipid molecule sphingosine-1-phosphate (S1P) has received attention in the cardiovascular field due to its significant cardioprotective effects, as revealed in animal studies. The purpose of our study was to identify the distribution characteristics of S1P in systolic heart failure patients and the prognostic value of S1P for long-term prognosis. METHODS: We recruited 210 chronic systolic heart failure patients from June 2014 to December 2015. Meanwhile 54 healthy people in the same area were selected as controls. Plasma S1P was measured by liquid chromatography-tandem mass spectrometry. Patients were grouped according to the baseline S1P level quartiles, and restricted cubic spline plots described the association between S1P and all-cause death. Cox proportional hazard analysis was used to determine the relationship between category of S1P and all-cause death. RESULTS: Compared with the control group, the plasma S1P in chronic heart failure patients demonstrated a higher mean level (1.269 µmol/L vs 1.122 µmol/L, P = 0.006) and a larger standard deviation (0.441 vs 0.316, P = 0.022). Based on multivariable Cox regression with restricted cubic spline analysis, a non-linear and U-shaped association between S1P levels and the risk of all-cause death was observed. After a follow-up period of 31.7 ± 10.3 months, the second quartile (0.967-1.192 µml/L) with largely normal S1P levels had the lowest all-cause mortality and either an increase (adjusted HR = 2.368, 95%CI 1.006-5.572, P = 0.048) or a decrease (adjusted HR = 0.041, 95%CI 0.002-0.808, P = 0.036) predicted a worse prognosis. The survival curves showed that patients in the lowest quartile and highest quartile were at a higher risk of death. CONCLUSIONS: Plasma S1P levels in systolic heart failure patients are related to the long-term all-cause mortality with a U-shaped correlation. TRIAL REGISTRATION: CHiCTR, ChiCTR-ONC-14004463. Registered 20 March 2014.


Asunto(s)
Insuficiencia Cardíaca Sistólica/sangre , Insuficiencia Cardíaca Sistólica/mortalidad , Lisofosfolípidos/sangre , Esfingosina/análogos & derivados , Adulto , Anciano , Causas de Muerte , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Esfingosina/sangre
6.
ESC Heart Fail ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514992

RESUMEN

AIMS: The benefits of lowering heart rate (HR) in heart failure (HF) with preserved ejection fraction (HFpEF) patients are still a matter of debate. This study aimed to investigate the relationship between changes in HR during hospitalization and cardiovascular (CV) events and all-cause death in hospitalized HFpEF patients. METHODS AND RESULTS: Hospitalized HF patients between January 2017 and December 2021 were consecutively enrolled in a national, multicentred, and prospective registry database, the China Cardiovascular Association Database-HF Center Registry. HF patients with a left ventricular ejection fraction of ≥50% were defined as HFpEF patients. The study analysed admission/discharge HR, change in HR during hospitalization (∆HR), and ∆HR ratio (∆HR/admission HR). The patients were categorized into three groups: no HR dropping group (ΔHR ratio > 0.0%), moderate HR dropping group (-15% < ΔHR ratio ≤ 0.0%), and excessive HR dropping group (ΔHR ratio ≤ -15%). All patients were followed up for 12 months. The primary endpoint was CV events (CV death or HF rehospitalization). The secondary endpoint was all-cause death. A total of 19 510 HFpEF patients (9750 males, mean age 71.9 ± 12.2 years) were included, with 4575 in the no HR dropping group, 8434 in the moderate HR dropping group, and 6501 in the excessive HR dropping group. Excessive HR dropping during hospitalization was significantly associated with an increased risk of CV events (17.1%) compared with the no HR dropping group (14.5%, P < 0.001) or the moderate HR dropping group (14.0%, P < 0.001), although all-cause mortality was similar among the three groups. After adjusting for multiple confounding factors, excessive HR dropping remained an independent predictor of increased CV event risk [hazard ratio 1.197, 95% confidence interval (CI) 1.078-1.328]. Subgroup analysis revealed that the prognostic impact of excessive HR dropping on increased CV event risk remained in the subgroups of older age, New York Heart Association class IV, ischaemic HF, higher left ventricular ejection fraction, absence of chronic kidney disease, and use of beta-blockers or ivabradine. Independent determinants associated with excessive HR dropping during admission included use of beta-blockers [odds ratio (OR) 1.683, 95% CI 1.558-1.819], lower discharge diastolic blood pressure (OR 0.988, 95% CI 0.985-0.991), no pacemaker (OR 0.501, 95% CI 0.416-0.603), coexisting atrial fibrillation or atrial flutter (OR 1.327, 95% CI 1.218-1.445), and use of digoxin (OR 1.340, 95% CI 1.213-1.480). CONCLUSIONS: In hospitalized HFpEF patients, excessive HR dropping during hospitalization is associated with an increased risk of CV death or HF rehospitalization. These findings highlight the importance of HR monitoring and avoiding excessively slowing down HR in hospitalized HFpEF patients to reduce the risk of CV events.

7.
J Environ Sci (China) ; 25(9): 1800-7, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24520722

RESUMEN

Biogas slurry is not suitable for liquid fertilizer due to its high amounts of volatile materials being of complicated composition and peculiar smell. In order to remove volatiles from biogas slurry efficiently, the dynamic headspace and gas chromatography-mass spectrometry were used to clear the composition of volatiles. Nitrogen stripping and superfluous ozone were also used to remove volatiles from biogas slurry. The results showed that there were 21 kinds of volatile compounds in the biogas slurry, including sulfur compounds, organic amines, benzene, halogen generation of hydrocarbons and alkanes, some of which had strong peculiar smell. The volatile compounds in biogas slurry can be removed with the rate of 53.0% by nitrogen stripping and with rate of 81.7% by the oxidization and stripping of the superfluous ozone. On this basis, the removal rate of the volatile compounds reached 99.2% by chloroform and n-hexane extraction, and almost all of odor was eliminated. The contents of some dissolved organic compounds decreased obviously and however main plant nutrients had no significant change in the biogas slurry after being treated.


Asunto(s)
Biocombustibles , Estiércol , Ozono/química , Solventes/química , Animales , Nitrógeno/química , Oxidación-Reducción , Porcinos , Volatilización
8.
Front Oncol ; 13: 1043869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025590

RESUMEN

Background: Multiple myeloma (MM) is the second most common hematological malignancy, and the treatments markedly elevate the survival rate of the patients in recent years. However, the prevalence of cardiovascular adverse events (CVAEs) in MM had been increasing recently. CVAEs in MM patients are an important problem that we should focus on. Clinical tools for prognostication and risk-stratification are needed. Patients and methods: This is a retrospective study that included patients who were newly diagnosed with multiple myeloma (NDMM) in Shanghai Changzheng Hospital and Affiliated Jinhua Hospital, Zhejiang University School of Medicine from June 2018 to July 2020. A total of 253 patients from two medical centers were divided into training cohort and validation cohort randomly. Univariable analysis of the baseline factors was performed using CVAEs endpoints. Multivariable analysis identified three factors for a prognostic model that was validated in internal validation cohorts. Results: Factors independently associated with CVAEs in NDMM were as follows: age>61 years old, high level of baseline office blood pressure, and left ventricular hypertrophy (LVH). Age contributed 2 points, and the other two factors contributed 1 point to a prognostic model. The model distinguished the patients into three groups: 3-4 points, high risk; 2 points, intermediate risk; 0-1 point, low risk. These groups had significant difference in CVAEs during follow-up days in both training cohort (p<0.0001) and validation cohort (p=0.0018). In addition, the model had good calibration. The C-indexes for the prediction of overall survival of CVAEs in the training and validation cohorts were 0.73 (95% CI, 0.67-0.79) and 0.66 (95% CI, 0.51-0.81), respectively. The areas under the receiver operating characteristic curve (AUROCs) of the 1-year CVAEs probability in the training and validation cohorts were 0.738 and 0.673, respectively. The AUROCs of the 2-year CVAE probability in the training and validation cohorts were 0.722 and 0.742, respectively. The decision-curve analysis indicated that the prediction model provided greater net benefit than the default strategies of providing assessment or not providing assessment for all patients. Conclusion: A prognostic risk prediction model for predicting CVAEs risk of NDMM patients was developed and internally validated. Patients at increased risk of CVAEs can be identified at treatment initiation and be more focused on cardiovascular protection in the treatment plan.

9.
Front Cardiovasc Med ; 8: 732076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692783

RESUMEN

This study aims to systematically reveal the changes in protein levels induced by regular exercise in mice with ischemic-induced heart failure (HF). Aerobic exercise training for the ischemic-induced HF mice lasted for 4 weeks and then we used the liquid chromatography-mass spectrometry method to identify and quantify the protein profile in the myocardium of mice. As a whole, 1,304 proteins (597 proteins up-regulated; 707 proteins down-regulated) were differentially expressed between the exercise group and the sedentary group, including numerous proteins related to energy metabolism. The significant alteration of the component (E1 component subunit alpha and subunit beta) and the activity-regulating enzyme (pyruvate dehydrogenase kinase 2 and pyruvate dehydrogenase kinase 4) of pyruvate dehydrogenase complex and poly [ADP-ribose] polymerase 3, a nicotinamide adenine dinucleotide(+)-consuming enzymes, was further verified in targeted analysis. Generally, this proteomics profiling furnishes a systematic insight of the influence of aerobic exercise on HF.

10.
RSC Adv ; 11(1): 114-123, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35423014

RESUMEN

The compound nitrapyrin is easily adsorbed by soil organic matter in high-organic matter soils, and this results in its effectiveness reducing significantly. In this study, the adsorption characteristics and mechanisms of nitrapyrin as an adsorptive on humic acid (HA) and fulvic acid (FA) as adsorbents were investigated. The results showed that the kinetics of adsorption of nitrapyrin on both HA and FA followed pseudo-second-order kinetic models (R 2 ≥ 0.925, P < 0.05) and the adsorption process included an initial fast-adsorption stage and a slow-adsorption stage thereafter. The adsorption efficiencies of nitrapyrin on HA + FA were higher than that on HA or FA alone, and that of HA was higher than that of FA. The adsorption isotherms of nitrapyrin on HA and FA could be optimally fitted with the Langmuir equation (R 2 ≥ 0.982, P < 0.05). The maximum adsorption capacities of nitrapyrin on HA, FA and HA + FA were 4896.49, 3173.70 and 4925.56 mg kg-1, respectively. Synergistic adsorption of nitrapyrin in co-existing systems of HA and FA was also observed. The adsorption mechanism of nitrapyrin on both HA and FA involved hydrogen bonding and hydrophobic interaction. Therefore, HA and FA in the soil environment can adsorb a large amount of nitrapyrin and reduce its effectiveness, and they have a positive synergistic effect.

11.
Sci Rep ; 10(1): 14939, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913331

RESUMEN

Considering the large amount and high frequency application of concentrated fertilizer nitrogen in the Black Soil Region of Northeast China, the current laboratory/field simulation study aimed to explore the pollution risk of added nitrogen in black soil to groundwater and identify effective measures to prevent and control soil nitrogen leaching with an undisturbed soil column. The results showed that the saturated nitrogen adsorption capacities increased by 1.7%, 7.7% and 18.5% in ploughing, impervious agent (starch grafted polyacrylic acid) addition, and corn straw returning treatments, respectively, relative to the control (no-till). When the collection volume of the leaching solution reached the experimental maximum (4,000 mL), the total amount of nitrogen leaching from the control soil column (i.e., the no-tillage treatment) accounted for more than 50% of the added nitrogen, indicating a great risk of nitrogen pollution in groundwater. Compared with the no-tillage treatment, the amount of nitrogen leaching from the ploughing treatment increased insignificantly, and the amount of nitrogen leaching in the following spring in the corn straw returning treatment increased by 11.2%. The amount of nitrogen leaching decreased by 12.5% in the soil sampled in autumn of the second year. The total amount of nitrogen leaching in the soil with impervious agents decreased by 40.1%. Therefore, the permeability-reducing agent could significantly reduce underground water pollution risk posed by nitrogen leaching.

12.
Sci Rep ; 10(1): 8831, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483261

RESUMEN

In order to clarify the mechanism and effect of bentonite-supported nanoscale zero-valent iron (nZVI@Bent) on Cr(VI) removal in soil suspended liquid, nZVI@Bent was prepared by liquid-phase reduction method in this research. A number of factors, including the mass ratio of Fe2+ to bentonite during preparation of nZVI@Bent, nZVI@Bent dosage, soil suspended liquid pH value and reaction temperature were assessed to determine their impact on the reduction of Cr(VI) in soil suspended liquid. The nZVI@Bent was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to analyze the mechanism of removal of Cr(VI) from the soil. The results showed that the temperature of soil suspended liquid had a significant effect on the removal efficiency. Calculated by the Arrhenius formula, nZVI@Bent removes Cr(VI) from the soil suspended liquid as an endothermic reaction with a reaction activation energy of 47.02 kJ/mol, showed that the reaction occurred easily. The removal of mechanism Cr(VI) from the soil by nZVI@Bent included adsorption and reduction, moreover, the reduction process can be divided into direct reduction and indirect reduction. According to XPS spectrogram analysis, the content of Cr(III) in the reaction product was 2.1 times of Cr(VI), indicated that the reduction effect was greater than the adsorption effect in the process of Cr(VI) removal. The experiment proved that nZVI@Bent can effectively remove Cr(VI) from soil suspension, and can provide technical support for repairing Cr(VI)-polluted paddy fields.

13.
Sci Rep ; 10(1): 6588, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313014

RESUMEN

In order to solve the problem that the traditional biochar(BC) has insufficient removal ability of enrofloxacin and TiO2 is difficult to recycle. In this study, TiO2-modified biochar composites were prepared by impregnation method. Through characterization analysis, The BET specific surface area results indicated that after loading TiO2, the specific surface area of TiO2-biochar(Ti-BC), TiO2-ironized biochar(Ti-FBC) and TiO2-alkaline biochar(Ti-KBC) increased by 4.34, 10.43 and 11.52 times, respectively. The analysis results of SEM, EDS, FT-IR, XRD and XPS showed that TiO2 was supported on biochar in the anatase state. The UV-vis DRS measurement showed that the band width of Ti-KBC was the smallest and the best catalytic activity. Under 15 W UV lamp (254 nm) irradiation, the photocatalytic degradation process of enrofloxacin by different biochar accords with the first-order kinetic equation. Ti-KBC showed best degradation effect under different initial concentrations of enrofloxacin. When the pH of the solution was 5.0 and the dosage of Ti-KBC was at 2.5 g·L-1, the enrofloxacin degradation rate of 100 mg·L-1 reached 85.25%. The quenching test confirmed that the active substance O2•- played a major role in the photocatalytic degradation process. After five cycles of the test, the degradation rate of Ti-KBC for enrofloxacin was 77.14%, which was still better than that of BC, Ti-BC and Ti-FBC.

14.
Sci Total Environ ; 688: 818-826, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31255820

RESUMEN

Cd contamination in agricultural soils threatens the safety of agricultural products and poses human health risk via food chain. However, the remediation of Cd polluted alkaline soils has not drawn the public concern, and the corresponding efficient amendments that can reduce Cd accumulation in crop grains are relatively few. In current study, mercapto-modified attapulgite (MA in abbreviation) was selected as the amendment to conduct winter wheat (Triticum aestivum L.) cultivation pot experiment to investigate the effect of MA on Cd accumulation in winter wheat and Cd bioavailability in alkaline soil. MA had no adverse impact on the normal growth of winter wheat but could inhibit Cd accumulation in wheat grain of both cultivars grown in alkaline soil with a maximum reduction of 75%, while pH-regulating amendment sepiolite had no reduction effect. In the term of soil chemistry, MA could decrease the zeta potential of soil particles and enhance the sorption amount of Cd on soil particles, resulted in the increase of Fe-Mn-oxides bounded Cd fraction in alkaline soil. The enhanced sorption effect combined with complexation effect of MA itself, made the exchangeable and bioavailable Cd concentrations in the soil decrease. In the term of plant uptake, MA could inhibit the uptake of Cd via roots from the soil, and hinder Cd transfer from roots to grains. MA had environmental friendliness and capability in the aspect of soil pH, effective cation exchange capacity and available micronutrients in the soil. The high performance of MA in inhabitation of Cd in winter wheat revealed that it was an efficient immobilization agent with great application potential for Cd-polluted alkaline soil.


Asunto(s)
Cadmio/metabolismo , Restauración y Remediación Ambiental/métodos , Compuestos de Magnesio , Compuestos de Silicona , Contaminantes del Suelo/metabolismo , Triticum/metabolismo , Suelo/química
15.
Environ Sci Process Impacts ; 19(12): 1563-1570, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29177306

RESUMEN

Remediation of heavy metal polluted agricultural soil is essential for human health and ecological safety and remediation mechanisms at the microscopic level are vital for their large-scale utilization. In this study, natural sepiolite was employed as an immobilization agent for in situ field-scale remediation of Cd-contaminated paddy soil and the remediation mechanisms were investigated in terms of soil chemistry and plant physiology. Natural sepiolite had a significant immobilization effect for bioavailable Cd contents in paddy soil, and consequently could lower the Cd concentrations of brown rice, husk, straw, and roots of rice plants by 54.7-73.7%, 44.0-62.5%, 26.5-67.2%, and 36.7-46.7%, respectively. Regarding soil chemistry, natural sepiolite increased the soil pH values and shifted the zeta potentials of soil particles to be more negative, enhancing the fixation or sorption of Cd on soil particles, and resulted in the reduction of HCl and DTPA extractable Cd concentrations in paddy soil. Natural sepiolite neither enhanced nor inhibited iron plaques on the rice root surface, but did change the chemical environments of Fe and S in rice root. Natural sepiolite improved the activities of antioxidant enzymes and enhanced the total antioxidant capacity to alleviate the stress of Cd. It also promotes the synthesis of GSH and NPT to complete the detoxification. In general, the remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.


Asunto(s)
Cadmio/análisis , Restauración y Remediación Ambiental/métodos , Silicatos de Magnesio/química , Contaminantes del Suelo/análisis , Agricultura , China , Concentración de Iones de Hidrógeno , Oryza/química , Raíces de Plantas/química , Suelo/química
16.
Ying Yong Sheng Tai Xue Bao ; 14(2): 215-8, 2003 Feb.
Artículo en Zh | MEDLINE | ID: mdl-12827873

RESUMEN

On the subtropical mountain swards, the effect of cutting periodicity on energy allocation, module density, number of branches and branching angle of T. repens were significant, With cutting periodicity raised, the energy allocation of stolon increased steadly, the caloric content of unit stolon dropped gradually, and the changing pattern of leaf density, stem density, branch number and internode's length was from low to high, and then to low. The branching intensity of T. repens ranged from 15 to 23.7 branches.m-2, and branching angle raried from 49.5 degrees to 60.2 degrees while the cutting periodicity differed.


Asunto(s)
Trifolium/metabolismo , Metabolismo Energético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA