Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792108

RESUMEN

Dye/salt separation has gained increasing attention in recent years, prompting the quest to find cost-effective and environmentally friendly raw materials for synthesizing high performance nanofiltration (NF) membrane for effective dye/salt separation. Herein, a high-performance loose-structured NF membrane was fabricated via a simple vacuum filtration method using a green nanomaterial, 2,2,6,6-tetramethylpiperidine-1-oxide radical (TEMPO)-oxidized cellulose nanofiber (TOCNF), by sequentially filtrating larger-sized and finer-sized TOCNFs on a microporous substrate, followed by crosslinking with trimesoyl chloride. The resulting TCM membrane possessed a separating layer composed entirely of pure TOCNF, eliminating the need for other polymer or nanomaterial additives. TCM membranes exhibit high performance and effective dye/salt selectivity. Scanning Electron Microscope (SEM) analysis shows that the TCM membrane with the Fine-TOCNF layer has a tight layered structure. Further characterizations via Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the presence of functional groups and chemical bonds of the crosslinked membrane. Notably, the optimized TCM-5 membrane exhibits a rejection rate of over 99% for various dyes (Congo red and orange yellow) and 14.2% for NaCl, showcasing a potential candidate for efficient dye wastewater treatment.

2.
J Environ Sci (China) ; 47: 100-108, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27593277

RESUMEN

The regeneration of commercial SCR (Selective Catalyst Reduction) catalysts deactivated by Pb and other elements was studied. The deactivated catalyst samples were prepared by chemical impregnation with mixed solution containing K2SO4, Na2SO4, CaSO4, Pb(NO3)2 and NH4H2PO4. A novel method combining Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and H2SO4 solution (viz. catalysts treated by dilute EDTA-2Na and H2SO4 solution in sequence) was used to recover the activity of deactivated samples, and the effect was compared with single H2SO4, oxalic acid, acetic acid, EDTA or HNO3 solutions. The surface structure, acidity and reducibility of samples were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), H2-temperature programmed section (H2-TPR), NH3-temperature programmed desorption (NH3-TPD) and in situ DRIFTS. Impurities caused a decrease of specific surface area and surface reducibility, as well as Brønsted acid sites, and therefore led to severe deactivation of the SCR catalyst. The use of an acid solution alone possibly eliminated the impurities on the deactivated catalyst to some extent, and also increased the specific surface area and Brønsted acid sites and promoted the surface reducibility, thus recovered the activity partially. The combination of EDTA-2Na and H2SO4 could remove most of the impurities and improve the activity significantly. The removal of Pb should be an important factor for regeneration. Due to a high removal rate for Pb and other impurities, the combination of EDTA-2Na and H2SO4 solutions provided the best efficiency.


Asunto(s)
Compuestos Inorgánicos/química , Plomo/química , Oxidación-Reducción , Adsorción , Modelos Químicos , Temperatura
3.
Langmuir ; 30(48): 14621-30, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25380407

RESUMEN

Molecular simulation techniques have revealed that the incorporation of fullerenes within porous aromatic frameworks (PAFs) remarkably enhances methanol uptake while inhibiting water uptake. The highest selectivity of methanol over water is found to be 1540 at low pressure (1 kPa) and decreases gradually with increasing pressure. The adsorption of water is very small compared to methanol, a useful material property for membrane and adsorbent-based separations. Grand canonical Monte Carlo (GCMC) simulations are utilized to calculate the pure component and mixture adsorption isotherms. The water and methanol mixture simulations show that water uptake is further inhibited above the pure component results because of the dominant methanol adsorption. Molecular dynamics (MD) simulations confirm that water diffusivity is also inhibited by strong methanol adsorption in the mixture. Overall, this study reveals profound hydrophobicity in C60@PAF materials and recommends C60@PAFs as suitable applicants for adsorbent and membrane-based separations of methanol/water mixtures and other alcohol/water separation applications.

4.
Soft Matter ; 10(28): 5192-200, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24916196

RESUMEN

Cross-linked poly(ethylene glycol) diacrylate (PEGDA) hydrogels with uniformly controlled nanoporous structures templated from hexagonal lyotropic liquid crystals (LLC) represent separation membrane materials with potentially high permeability and selectivity due to their high pore density and narrow pore size distribution. However, retaining LLC templated nanostructures is a challenge as the polymer gels are not strong enough to sustain the surface tension during the drying process. In the current study, cross-linked PEGDA gels were reinforced with a silica network synthesized via an in situ sol-gel method, which assists in the retention of the hexagonal LLC structure. The silica precursor does not obstruct the formation of hexagonal phases. After surfactant removal and drying, these hexagonal structures in samples with a certain amount of tetraethoxysilane (TEOS) loading are well retained while the nanostructures are collapsed in samples without silica reinforcement, leading to the hypothesis that the reinforcement provided by the silica network stabilizes the LLC structure. The study examines the conditions necessary for a sufficient and well dispersed silica network in PEGDA gels that contributes to the retention of original LLC structures, which potentially enables broad applications of these gels as biomedical and membrane materials.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Cristales Líquidos/química , Polietilenglicoles/química , Gel de Sílice/química , Nanoestructuras/química , Silanos/química , Tensión Superficial , Tensoactivos/química
5.
Sci Adv ; 10(17): eadl1455, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669337

RESUMEN

Nanosheet-based membranes have shown enormous potential for energy-efficient molecular transport and separation applications, but designing these membranes for specific separations remains a great challenge due to the lack of good understanding of fluid transport mechanisms in complex nanochannels. We synthesized reduced MXene/graphene hetero-channel membranes with sub-1-nm pores for experimental measurements and theoretical modeling of their structures and fluid transport rates. Our experiments showed that upon complete rejection of salt and organic dyes, these membranes with subnanometer channels exhibit remarkably high solvent fluxes, and their solvent transport behavior is very different from their homo-structured counterparts. We proposed a subcontinuum flow model that enables accurate prediction of solvent flux in sub-1-nm slit-pore membranes by building a direct relationship between the solvent molecule-channel wall interaction and flux from the confined physical properties of a liquid and the structural parameters of the membranes. This work provides a basis for the rational design of nanosheet-based membranes for advanced separation and emerging nanofluidics.

6.
Sci Total Environ ; 873: 162430, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842573

RESUMEN

Forward osmosis (FO) has been widely studied as a promising technology in wastewater treatment, but undesirable reverse solute diffusion (RSD) is inevitable in the FO process. The RSD is generally regarded as a negative factor for the FO process, resulting in the loss of draw solutes and reduced FO efficiency. Conventional strategies to address RSD focus on reducing the amount of reverse draw solutes by fabricating high selective FO membranes and/or selecting the draw solute with low diffusion. However, since RSD is inevitable, doubts have been raised about the strategies to cope with the already occurring reverse draw solutes in the feed solution, and the feasibility to positively utilise the RSD phenomenon to improve the FO process. Herein, we review the state-of-the-art applications of RSD and their benefits such as improving selectivity and maintaining the stability of the feed solution for both independent FO processes and FO integrated processes. We also provide an outlook and discuss important considerations, including membrane fouling, membrane development and draw/feed solution properties, in RSD utilisation for water and wastewater treatment.

7.
ACS Appl Mater Interfaces ; 15(26): 31561-31571, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37338294

RESUMEN

Graphene oxide (GO) membranes are emerging for water treatment. Meanwhile, challenges remain due to membrane fouling and their instability in aqueous solutions. Herein, a novel GO-based mixed-dimensional membrane with superior antifouling and nonswelling properties was prepared by assembling two-dimensional (2D) GO nanosheets and zero-dimensional (0D) copper(I) oxide-incorporated titanium dioxide photocatalyst (CT). The decoration of CT in GO nanosheets tuned the microstructure and surface hydrophilicity while creating more transport channels in CT/GO membranes. This resulted in a high water permeance of 171.5 L m-2 h-1 bar-1 and improved selectivity to various dye molecules (96.2-98.6%). Due to the significantly enhanced antibacterial properties of the CT nanoparticles, the growth of bacteria on the surface of the CT/GO membrane was suppressed (threefold less than that on the GO membrane). Moreover, the embedding of photocatalysts also allowed CT/GO membranes to exhibit ∼9-fold improvement in antibacterial activity and organic dye degradation performance under visible-light irradiation. This study offers a powerful solution to enhance the nanofiltration performance and antibacterial properties of GO membranes toward practical applications.

8.
Water Res ; 229: 119465, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513019

RESUMEN

Sulfate radical (SO4●-) based advanced oxidation is considered as a promising pretreatment strategy to degrade organic pollutants and thereby mitigate the membrane fouling in the membrane process. In this study, heat-activated persulfate (PS) activation was integrated with the membrane distillation (MD) process for the alleviation of membrane fouling in treatment of wastewater treatment plant (WWTP) secondary effluent and surface water. In-depth understanding of the molecular fate during membrane fouling control process was performed by using a non-targeted screening method of two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF-MS) coupling with multiple characterizations. It was found that the heat-activated PS activation pretreatment could effectively degrade the dissolved organic matter (DOM) and change its molecular conformation, wherein the relative abundance of oxygen-containing substances was remarkably increased through oxygenation reactions. Moreover, the refractory organics with higher molecular weight (MW) and unsaturation degree were more inclined to be destroyed, following by partial mineralization during pretreatment process. It was also identified that oxygen-deficient compounds and the molecular formulas featuring higher double bond equivalent (DBE) values and lower MW tended to be deposited on the membrane surface to cause the membrane fouling. In particular, the aliphatic substances were the predominant components irrespective of membrane foulant samples from secondary effluent or surface water. Meanwhile, the complexation between organic compounds and high valence cations as well as the precipitation of inorganics were restrained owing to the reduction of DOM concentration and the transformation of molecular structure, consequently leading to reduced membrane fouling. This study is believed to further provide new insight into the membrane fouling control mechanism at molecular level.


Asunto(s)
Destilación , Purificación del Agua , Calor , Ultrafiltración/métodos , Membranas Artificiales , Purificación del Agua/métodos , Oxígeno , Agua
9.
Nat Commun ; 14(1): 4075, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429847

RESUMEN

Covalent modification is commonly used to tune the channel size and functionality of 2D membranes. However, common synthesis strategies used to produce such modifications are known to disrupt the structure of the membranes. Herein, we report less intrusive yet equally effective non-covalent modifications on Ti3C2Tx MXene membranes by a solvent treatment, where the channels are robustly decorated by protic solvents via hydrogen bond network. The densely functionalized (-O, -F, -OH) Ti3C2Tx channel allows multiple hydrogen bond establishment and its sub-1-nm size induces a nanoconfinement effect to greatly strengthen these interactions by maintaining solvent-MXene distance and solvent orientation. In sub-1-nm ion sieving and separation, as-decorated membranes exhibit stable ion rejection, and proton-cation (H+/Mn+) selectivity that is up to 50 times and 30 times, respectively, higher than that of pristine membranes. It demonstrates the feasibility of non-covalent methods as a broad modification alternative for nanochannels integrated in energy-, resource- and environment-related applications.

10.
Nat Commun ; 14(1): 2161, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061522

RESUMEN

Engineering different two-dimensional materials into heterostructured membranes with unique physiochemical properties and molecular sieving channels offers an effective way to design membranes for fast and selective gas molecule transport. Here we develop a simple and versatile pyro-layering approach to fabricate heterostructured membranes from boron nitride nanosheets as the main scaffold and graphene nanosheets derived from a chitosan precursor as the filler. The rearrangement of the graphene nanosheets adjoining the boron nitride nanosheets during the pyro-layering treatment forms precise in-plane slit-like nanochannels and a plane-to-plane spacing of ~3.0 Å, thereby endowing specific gas transport pathways for selective hydrogen transport. The heterostructured membrane shows a high H2 permeability of 849 Barrer, with a H2/CO2 selectivity of 290. This facile and scalable technique holds great promise for the fabrication of heterostructures as next-generation membranes for enhancing the efficiency of gas separation and purification processes.

11.
Membranes (Basel) ; 12(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35877841

RESUMEN

Membranes with excellent separation performance and stability are needed for organic solvent nanofiltration in industrial separation and purification processes. Here we reported a newly PPSU-MoS2/PA-MIL-101(Cr) composite membrane with high permeance, good selectivity and stability. The MIL-101(Cr) was introduced in the polyamide (PA) layer via the PIP/TMC interfacial polymerization process on a microporous PPSU-MoS2 substrate. At a small doping amount of 0.005 wt% MIL-101(Cr), the PPSU-MoS2/PA-MIL-101(Cr) composite membrane exhibited a high methanol permeance of 12.03 L m-2 h-1 bar-1, twice higher than that of the pristine membrane without sacrificing selectivity. Furthermore, embedding MIL-101(Cr) notably enhanced the stability of the composite membrane, with permeance only decreasing by 8% after a long time operation of 80 h (pristine membrane decreased by 25%). This work demonstrated a composite membrane modified by MIL-101(Cr) with superior separation performance, which provides potential application of MOF materials for high-performance membranes in organic solvent nanofiltration and a theoretical foundation for future research in studying MOF's influence on membrane properties.

12.
Sci Total Environ ; 806(Pt 4): 151207, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728199

RESUMEN

Landfill leachate is a highly polluted and complex wastewater as it contains large amounts of organic matters, ammonia­nitrogen, heavy metals, and per-/poly-fluoroalkyl substances (PFAS), which makes its treatment very challenging. In this paper, hydrophilic/hydrophobic dual layer membranes combining advantages of pervaporation and membrane distillation was employed to treat leachate in a direct contact membrane distillation (DCMD) configuration. An aluminum fumarate (AlFu) metal organic framework (MOF) incorporated poly(vinyl alcohol) (PVA) hydrophilic layer was coated on hydrophobic PTFE membrane to overcome the low separation efficiency of PFAS and ammonia and wetting issues encountered by the conventional hydrophobic PTFE membrane used for DCMD. The rejections of dual layer membranes with different MOF loading to PFAS, ammonia, TOC and TDS were assessed based on the amount of AlFu MOF incorporated into the PVA layer. Based on the conducted adsorption tests, it was found that AlFu MOF increases the rejection of PVA layer to PFAS and ammonia. The coating of the hydrophilic layer could enhance the wetting resistance with/without MOF addition. In comparison with the pristine PTFE membrane using synthetic feed containing 3 wt% NaCl, 1 wt% addition of AlFu MOF into the PVA layer showed slightly increased flux. All the tested membranes showed more than 99% rejection to TOC. The rejection to ammonia was increased as more MOF was incorporated into the PVA layer. The maximum rejection of ammonia was 99.8% when the PVA layer containing 10% MOF. All the membranes showed more than 99% rejection to PFOS and PFHxS. However, PTFE membrane did not show any rejection to PFOA. As more MOF was added into the hydrophilic layer, the rejection to PFOA increased, but plateaued at 65.6% with 5% MOF incorporation into the hydrophilic layer.


Asunto(s)
Fluorocarburos , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Amoníaco , Destilación , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
13.
J Hazard Mater ; 431: 128622, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278950

RESUMEN

Catalytic reduction of NO using CO, which is usually present in the flue gas of the iron and steel industry, is considered as an economical and eco-friendly de-NOx method (CO-SCR). However, the oxygen present in the flue gas will significantly inhibit the CO-SCR activity of the catalyst, thereby limiting its industrial application. Herein, catalysts based on iron and cerium oxides were prepared and modified with different metals to investigate their performance for the CO-SCR reaction in the presence of oxygen. The results show that the Fe/CeO2 catalyst can reach 99% NO conversion at 200 °C, but its activity decreased dramatically to 42.7% when the oxygen is present (0.5 vol%). By contrast, the NO conversion of Ni-doped Fe/CeO2 catalyst demonstrated significant enhanced oxygen resistance and could achieve 92% even at 150 °C in the presence of 0.5 vol% oxygen. Characterization techniques such as N2 adsorption, XRD, SEM/TEM, XPS, H2-TPR, and in situ DRIFT were employed to investigate the mechanism of the improved oxygen resistance property of Ni-doped catalyst. The results show that the doped Ni can interact with Fe species, increases the BET surface area of the catalyst and generates more surface oxygen vacancies (SOV) and surface synergetic oxygen vacancy (SSOV) in CO-SCR reaction, thereby improving the redox performance of the catalyst. In situ DRIFT results show that the better redox performance of NiFe/CeO2 catalyst is conducive to the conversion of adsorbed NOx species to the reactive intermediate NO2- species during the reaction. Meanwhile, the enhanced SOV/SSOV in the NiFe/CeO2 catalyst can remain active in the presence of oxygen. Therefore, the NiFe/CeO2 catalyst exhibits a promising catalytic activity in CO-SCR reaction when oxygen is present.

14.
Chemosphere ; 294: 133728, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35085609

RESUMEN

New two-dimensional (2D) material MXene based lamellar membranes constructed from 2D MXene nanosheets have shown promising potential for water treatment with excellent selective property and high water flux. However, the effect of lateral size of MXene nanosheets on the membrane property and performance was rarely considered. Herein, the MXene nanosheets with different lateral size (552.3 nm, 397.5 nm and 281.8 nm) segregated via adjusting centrifugation conditions were used to prepare MXene membranes. XRD and cross-sectional SEM images confirmed that the resulting MXene membranes had the similar d-spacing and thickness. The MXene membrane with the smallest lateral size, MXene(S)-M, owned the largest surface roughness with reduced surface hydrophilicity. Lateral size determined mass transfer pathway and transfer resistance, which consequently influenced the water permeance and rejection of MXene membranes for dyeing wastewater treatment. MXene(S)-M with the shortest mass transfer pathway had the high water permeance while the MXene membrane with larger lateral size (MXene(L)-M and MXene(M)-M), possessing longer mass transport pathway, promoted high dye rejection.


Asunto(s)
Aguas Residuales , Purificación del Agua , Colorantes , Estudios Transversales , Titanio
15.
Sci Total Environ ; 827: 154310, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35257781

RESUMEN

This study investigated a gas fractionation enhanced soil washing method for poly-and perfluoroalkyl substances (PFAS) removal from contaminated soil. With the assistance of gas fractionation, PFAS removal was increased by a factor of 9, compared to the conventional soil washing method. Pre-extraction (pre-treatment) of the soil with water before gas fractionation enhanced PFAS removal from soil. The optimum extraction time varied based on the soil particle size, since it will change the swelling time of the soil. The influence of various operational conditions such as water to soil mass ratio (W:S ratio), gas type in fractionation, gas flowrate, fractionation time and soil pre-treatment condition have been studied to identify the critical influencing factors. Among various W:S ratios (2, 4, 5, 6, 8, and 10) studied, higher W:S ratio resulted in better PFAS removals, but PFAS removal began to plateau as the W:S ratio increased. PFAS removal could be improved by repeated treatment with low water consumption. Air, oxygen, and ozone generated by air and oxygen were used, in which ozone generated by oxygen achieved the highest PFAS removals of 55.9%. Among different fractionation times (10 min, 20 min and 30 min), a fractionation time of 20 min achieved better total PFAS removal for studied soil, because PFOS was the dominant species in the total PFAS. However, the removal of some PFAS species, such as PFHxS, would be increased with extended fractionation time. With constant fractionation time (10 min), PFAS removal performance improved with the increasing gas flowrate.


Asunto(s)
Fluorocarburos , Ozono , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Suelo , Tecnología , Agua , Contaminantes Químicos del Agua/análisis
16.
Membranes (Basel) ; 11(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34940456

RESUMEN

Methylcyclohexane (MCH), one of the liquid organic hydrogen carriers (LOHCs), offers a convenient way to store, transport, and supply hydrogen. Some features of MCH such as its liquid state at ambient temperature and pressure, large hydrogen storage capacity, its well-known catalytic endothermic dehydrogenation reaction and ease at which its dehydrogenated counterpart (toluene) can be hydrogenated back to MCH and make it one of the serious contenders for the development of hydrogen storage and transportation system of the future. In addition to advances on catalysts for MCH dehydrogenation and inorganic membrane for selective and efficient separation of hydrogen, there are increasing research interests on catalytic membrane reactors (CMR) that combine a catalyst and hydrogen separation membrane together in a compact system for improved efficiency because of the shift of the equilibrium dehydrogenation reaction forwarded by the continuous removal of hydrogen from the reaction mixture. Development of efficient CMRs can serve as an important step toward commercially viable hydrogen production systems. The recently demonstrated commercial MCH-TOL based hydrogen storage plant, international transportation network and compact hydrogen producing plants by Chiyoda and some other companies serves as initial successful steps toward the development of full-fledged operation of manufacturing, transportation and storage of zero carbon emission hydrogen in the future. There have been initiatives by industries in the development of compact on-board dehydrogenation plants to fuel hydrogen-powered locomotives. This review mainly focuses on recent advances in different technical aspects of catalytic dehydrogenation of MCH and some significant achievements in the commercial development of MCH-TOL based hydrogen storage, transportation and supply systems, along with the challenges and future prospects.

17.
ACS Appl Mater Interfaces ; 13(38): 46202-46212, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34528779

RESUMEN

Membrane fouling has remained a major challenge limiting the wide application of membrane technology because it reduces the efficiency and shortens the lifespan of the membrane, thus increasing the operation cost. Herein we report a novel dual-function nanocomposite membrane incorporating silver-coated gold nanoparticles (Au@AgNPs) into a sulfosuccinic acid (SSA) cross-linked poly(vinyl alcohol) (PVA) membrane for a pervaporation desalination. Compared with the control PVA membrane and PVA/SSA membrane, the Au@AgNPs/PVA/SSA membrane demonstrated a higher water flux and better salt rejection as well as an enhanced antifouling property. More importantly, Au@AgNPs provided an additional function enabling a foulant detection on the membrane surface via surface-enhanced Raman spectroscopy (SERS) as Au@AgNPs could amplify the Raman signals as an SERS substrate. Distinct SERS spectra given by a fouled membrane helped to distinguish different protein foulants from their characteristic fingerprint peaks. Their fouling tendency on the membrane was also revealed by comparing the SERS intensities of mixed foulants on the membrane surface. The Au@AgNPs/PVA/SSA nanocomposite membrane presented here demonstrated the possibility of a multifunction membrane to achieve both antifouling and fouling detection, which could potentially be used in water treatment.

18.
Membranes (Basel) ; 11(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919353

RESUMEN

The application of membrane technologies for wastewater treatment to recover water and nutrients from different types of wastewater can be an effective strategy to mitigate the water shortage and provide resource recovery for sustainable development of industrialisation and urbanisation. Forward osmosis (FO), driven by the osmotic pressure difference between solutions divided by a semi-permeable membrane, has been recognised as a potential energy-efficient filtration process with a low tendency for fouling and a strong ability to filtrate highly polluted wastewater. The application of FO for wastewater treatment has received significant attention in research and attracted technological effort in recent years. In this review, we review the state-of-the-art application of FO technology for sewage concentration and wastewater treatment both as an independent treatment process and in combination with other treatment processes. We also provide an outlook of the future prospects and recommendations for the improvement of membrane performance, fouling control and system optimisation from the perspectives of membrane materials, operating condition optimisation, draw solution selection, and multiple technologies combination.

19.
J Hazard Mater ; 413: 125361, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33930946

RESUMEN

The unexpected phenomenon in which different transition metals (Co, Ni and Cu) presented significant variation of participation levels as the auxiliaries in Mn-based bimetallic oxide catalysts were reported here. It is found that the Co element more easily to form Mn enriched surface bimetallic oxides with Mn than Ni and Cu, resulting in Co-MnOx exhibited the best deNOx activity and SO2 tolerance, followed by Ni-MnOx and Cu-MnOx. The role of different transition metal and structure-activity relationships were systematically investigated by advanced techniques including Synchrotron XAFS and in situ DRIFTs analysis. The excellent activity of Co-MnOx was related to its unique Mn-enriched surface (Co2+)tet(Mn3+ Co3+)octO4 structure with Mn cations occupying the octahedral sites, which is superior to the Ni-MnOx and Cu-MnOx with Mn-lean surface. In addition, the reaction energy barrier of Co-MnOx is weakened due to the lower electron cloud density around the Mn atom as compared to Ni-MnOx and Cu-MnOx. Moreover, Co-MnOx benefiting from the rapid electron migration between Mn and Co, more active bidentate/bridged nitrates could react with adsorbed NH3 in faster reaction rates following the L-H mechanism.

20.
Membranes (Basel) ; 11(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567617

RESUMEN

In this paper, the transport phenomena in four common membrane distillation (MD) configurations and three popular modelling approaches are introduced. The mechanism of heat transfer on the feed side of all configurations are the same but are distinctive from each other from the membrane interface to the bulk permeate in each configuration. Based on the features of MD configurations, the mechanisms of mass and heat transfers for four configurations are reviewed together from the bulk feed to the membrane interface on the permeate but reviewed separately from the interface to the bulk permeate. Since the temperature polarisation coefficient cannot be used to quantify the driving force polarisation in Sweeping Gas MD and Vacuum MD, the rate of driving force polarisation is proposed in this paper. The three popular modelling approaches introduced are modelling by conventional methods, computational fluid dynamics (CFD) and response surface methodology (RSM), which are based on classic transport mechanism, computer science and mathematical statistics, respectively. The default assumptions, area for applications, advantages and disadvantages of those modelling approaches are summarised. Assessment and comparison were also conducted based on the review. Since there are only a couple of full-scale plants operating worldwide, the modelling of operational cost of MD was only briefly reviewed. Gaps and future studies were also proposed based on the current research trends, such as the emergence of new membranes, which possess the characteristics of selectivity, anti-wetting, multilayer and incorporation of inorganic particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA