Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Plant J ; 117(5): 1543-1557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100514

RESUMEN

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.


Asunto(s)
Sorghum , Sorghum/genética , Genética Inversa , Fitomejoramiento , Mutación , Fenotipo , Grano Comestible/genética , Metanosulfonato de Etilo/farmacología , Genoma de Planta/genética
2.
J Exp Bot ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041593

RESUMEN

Cuticular wax (CW) is the first defensive barrier of plants that forms a waterproof barrier, protects the plant from desiccation, and defends against insects, pathogens, and UV radiation. Sorghum, an important grass crop with high heat and drought tolerance, exhibits a much higher wax load than other grasses and the model plant Arabidopsis. In this study, we explored the regulation of sorghum CW biosynthesis using a bloomless mutant. The CW on leaf sheaths of bloomless 41 (bm41) mutant showed significantly reduced very long-chain fatty acids (VLCFAs), triterpenoids, alcohols, and other wax components, with an overall 86% decrease in total wax content compared to the wild-type. Notably, the 28-carbon and 30-carbon VLCFAs were decreased in the mutants. Using bulk segregant analysis, we identified the causal gene of the bloomless phenotype as a leucine-rich repeat transmembrane protein kinase. Transcriptome analysis of the wild-type and bm41 mutant leaf sheaths revealed BM41 as a positive regulator of lipid biosynthesis and steroid metabolism. BM41 may regulate CW biosynthesis by regulating the expression of the gene encoding 3-ketoacyl-CoA synthase 6. Identification of BM41 as a new regulator of CW biosynthesis provides fundamental knowledge for improving grass crops' heat and drought tolerance by increasing CW.

3.
Mol Plant Microbe Interact ; 35(9): 755-767, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35394339

RESUMEN

The precursors and derivatives of jasmonic acid (JA) contribute to plant protective immunity to insect attack. However, the role of JA in sorghum (Sorghum bicolor) defense against sugarcane aphid (SCA) (Melanaphis sacchari), which is considered a major threat to sorghum production, remains elusive. Sorghum SC265, previously identified as a SCA-resistant genotype among the sorghum nested association mapping founder lines, transiently increased JA at early stages of aphid feeding and deterred aphid settling. Monitoring of aphid feeding behavior using electropenetrography, a technique to unveil feeding process of piercing-sucking insects, revealed that SC265 plants restricted SCA feeding from the phloem sap. However, exogenous application of JA attenuated the resistant phenotype and promoted improved aphid feeding and colonization on SC265 plants. This was further confirmed with sorghum JA-deficient plants, in which JA deficiency promoted aphid settling, however, it also reduced aphid feeding from the phloem sap and curtailed SCA population. Exogenous application of JA caused enhanced feeding and aphid proliferation on JA-deficient plants, suggesting that JA promotes aphid growth and development. SCA feeding on JA-deficient plants altered the sugar metabolism and enhanced the levels of fructose and trehalose compared with wild-type plants. Furthermore, aphid artificial diet containing fructose and trehalose curtailed aphid growth and reproduction. Our findings underscore a previously unknown dichotomous role of JA, which may have opposing effects by deterring aphid settling during the early stage and enhancing aphid proliferative capacity during later stages of aphid colonization on sorghum plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Ciclopentanos , Fructosa , Oxilipinas , Plantas , Sorghum/genética , Trehalosa
4.
Planta ; 255(2): 35, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35015132

RESUMEN

MAIN CONCLUSION: SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources for sorghum germplasm improvement. Public research and development in agriculture rely on proper data and resource sharing within stakeholder communities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm development. Here, we present the SorghumBase web portal ( https://www.sorghumbase.org ), a resource for the sorghum research community. SorghumBase hosts a wide range of sorghum genomic information in a modular framework, built with open-source software, to provide a sustainable platform. This initial release of SorghumBase includes: (1) five sorghum reference genome assemblies in a pan-genome browser; (2) genetic variant information for natural diversity panels and ethyl methanesulfonate (EMS)-induced mutant populations; (3) search interface and integrated views of various data types; (4) links supporting interconnectivity with other repositories including genebank, QTL, and gene expression databases; and (5) a content management system to support access to community news and training materials. SorghumBase offers sorghum investigators improved data collation and access that will facilitate the growth of a robust research community to support genomics-assisted breeding.


Asunto(s)
Sorghum , Bases de Datos Genéticas , Grano Comestible , Genoma de Planta/genética , Genómica , Internet , Fitomejoramiento , Sorghum/genética
5.
Bioinformatics ; 37(3): 382-387, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32777814

RESUMEN

SUMMARY: With the advance of next-generation sequencing technologies and reductions in the costs of these techniques, bulked segregant analysis (BSA) has become not only a powerful tool for mapping quantitative trait loci but also a useful way to identify causal gene mutations underlying phenotypes of interest. However, due to the presence of background mutations and errors in sequencing, genotyping, and reference assembly, it is often difficult to distinguish true causal mutations from background mutations. In this study, we developed the BSAseq workflow, which includes an automated bioinformatics analysis pipeline with a probabilistic model for estimating the linked region (the region linked to the causal mutation) and an interactive Shiny web application for visualizing the results. We deeply sequenced a sorghum male-sterile parental line (ms8) to capture the majority of background mutations in our bulked F2 data. We applied the workflow to 11 bulked sorghum F2 populations and 1 rice F2 population and identified the true causal mutation in each population. The workflow is intuitive and straightforward, facilitating its adoption by users without bioinformatics analysis skills. We anticipate that the BSAseq workflow will be broadly applicable to the identification of causal mutations for many phenotypes of interest. AVAILABILITY AND IMPLEMENTATION: BSAseq is freely available on https://www.sciapps.org/page/bsa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Sitios de Carácter Cuantitativo , Internet , Mutación , Sorghum/genética , Flujo de Trabajo
6.
Planta ; 254(6): 114, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739592

RESUMEN

MAIN CONCLUSION: Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.


Asunto(s)
Sorghum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Genómica , Fitomejoramiento , Sorghum/genética
7.
Planta ; 253(2): 33, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33459875

RESUMEN

MAIN CONCLUSION: A novel inducible secretion system mutation in Sorghum named Red root has been identified. The mutant plant root exudes pigmented compounds that enriches Actinobacteria in its rhizosphere compared to BTx623. Favorable plant-microbe interactions in the rhizosphere positively influence plant growth and stress tolerance. Sorghum bicolor, a staple biomass and food crop, has been shown to selectively recruit Gram-positive bacteria (Actinobacteria) in its rhizosphere under drought conditions to enhance stress tolerance. However, the genetic/biochemical mechanism underlying the selective enrichment of specific microbial phyla in the sorghum rhizosphere is poorly known due to the lack of available mutants with altered root secretion systems. Using a subset of sorghum ethyl methanesulfonate (EMS) mutant lines, we have isolated a novel Red root (RR) mutant with an increased accumulation and secretion of phenolic compounds in roots. Genetic analysis showed that RR is a single dominant mutation. We further investigated the effect of root-specific phenolic compounds on rhizosphere microbiome composition under well-watered and water-deficit conditions. The microbiome diversity analysis of the RR rhizosphere showed that Actinobacteria were enriched significantly under the well-watered condition but showed no significant change under the water-deficit condition. BTx623 rhizosphere showed a significant increase in Actinobacteria under the water-deficit condition. Overall, the rhizosphere of RR genotype retained a higher bacterial diversity and richness relative to the rhizosphere of BTx623, especially under water-deficit condition. Therefore, the RR mutant provides an excellent genetic resource for rhizosphere-microbiome interaction studies as well as to develop drought-tolerant lines. Identification of the RR gene and the molecular mechanism through which the mutant selectively enriches microbial populations in the rhizosphere will be useful in designing strategies for improving sorghum productivity and stress tolerance.


Asunto(s)
Sistemas de Secreción Bacterianos , Rizosfera , Microbiología del Suelo , Sorghum , Bacterias/genética , Sistemas de Secreción Bacterianos/genética , Mutación , Raíces de Plantas/microbiología , Sorghum/genética , Sorghum/microbiología
8.
Planta ; 254(5): 98, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34657208

RESUMEN

MAIN CONCLUSION: Mota Maradi is a sorghum line that exhibits holistic salinity tolerance mechanisms, making it a viable potential donor in breeding efforts for improved sorghum lines. High soil salinity is one of the global challenges for crop growth and productivity. Understanding the salinity tolerance mechanisms in crops is necessary for genetic breeding of salinity-tolerant crops. In this study, physiological and molecular mechanisms in sorghum were identified through a comparative analysis between a Nigerien salinity-tolerant sorghum landrace, Mota Maradi, and the reference sorghum line, BTx623. Significant differences on physiological performances were observed, particularly on growth and biomass gain, photosynthetic rate, and the accumulation of Na+, K+, proline, and sucrose. Transcriptome profiling of the leaves, leaf sheaths, stems, and roots revealed contrasting differentially expressed genes (DEGs) in Mota Maradi and BTx623 which supports the physiological observations from both lines. Among the DEGs, ion transporters such as HKT, NHX, AKT, HAK5, and KUP3 were likely responsible for the differences in Na+ and K+ accumulation. Meanwhile, DEGs involved in photosynthesis, cellular growth, signaling, and ROS scavenging were also identified between these two genotypes. Functional and pathway analysis of the DEGs has revealed that these processes work in concert and are crucial in elevated salinity tolerance in Mota Maradi. Our findings indicate how different complex processes work synergistically for salinity stress tolerance in sorghum. This study also highlights the unique adaptation of landraces toward their respective ecosystems, and their strong potential as genetic resources for future plant breeding endeavors.


Asunto(s)
Tolerancia a la Sal , Sorghum , Ecosistema , Perfilación de la Expresión Génica , Fitomejoramiento , Salinidad , Tolerancia a la Sal/genética , Sorghum/genética , Estrés Fisiológico , Transcriptoma
9.
Planta ; 252(4): 62, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32965567

RESUMEN

MAIN CONCLUSION: Linolenic acid produced by the ω-3 fatty acid desaturase MSD3 in sorghum is used for insect-induced jasmonic acid production and is important for resistance against Spodoptera frugiperda. Jasmonic acid (JA) is a phytohormone that regulates both plant development and stress responses. In sorghum (Sorghum bicolor), the ω-3 fatty acid desaturase Multiseeded3 (MSD3) and the 13-lipoxygenase Multiseeded2 (MSD2) are important for producing JA to regulate panicle development and spikelet fertility, but their function in plant defense remains unknown. In this study, we examined whether these genes are important for the production of JA in response to herbivory by the insect pest Spodoptera frugiperda. Compared to wild-type controls, the msd3 mutant accumulated less JA in leaves of both infested and uninfested plants, revealing that MSD3 is involved in stress-induced JA production. In contrast, herbivore-induced JA production in the msd2 mutant was indistinguishable from wild type, indicating that MSD2 does not function in herbivore-induced JA production. An increase of S. frugiperda growth was observed on both the msd3 and msd2 mutants, hinting at roles for both JA and additional oxylipins in sorghum's defense responses.


Asunto(s)
Ácido Graso Desaturasas , Lipooxigenasa , Defensa de la Planta contra la Herbivoria , Sorghum , Spodoptera , Animales , Ácido Graso Desaturasas/metabolismo , Herbivoria , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Mutación , Oxilipinas/metabolismo , Defensa de la Planta contra la Herbivoria/genética , Sorghum/enzimología , Sorghum/genética , Sorghum/parasitología , Spodoptera/fisiología
10.
J Exp Bot ; 71(4): 1598-1613, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745559

RESUMEN

Gene regulation is central for growth, development, and adaptation to environmental changes in all living organisms. Many genes are induced by environmental cues, and the expression of these inducible genes is often repressed under normal conditions. Here, we show that the SHINY2 (SHI2) gene is important for repressing salt-inducible genes and also plays a role in cold response. The shi2 mutant displayed hypersensitivity to cold, abscisic acid (ABA), and LiCl. Map-based cloning demonstrates that SHI2 encodes a DEAD- (Asp-Glu-Ala-Asp) box RNA helicase with similarity to a yeast splicing factor. Transcriptomic analysis of the shi2 mutant in response to cold revealed that the shi2 mutation decreased the number of cold-responsive genes and the magnitude of their response, and resulted in the mis-splicing of some cold-responsive genes. Under salt stress, however, the shi2 mutation increased the number of salt-responsive genes but had a negligible effect on mRNA splicing. Our results suggest that SHI2 is a component in a ready-for-transcription repressor complex important for gene repression under normal conditions, and for gene activation and transcription under stress conditions. In addition, SHI2 also serves as a splicing factor required for proper splicing of cold-responsive genes and affects 5' capping and polyadenylation site selection.


Asunto(s)
ARN Helicasas DEAD-box , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico , Aclimatación , Frío , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Empalme del ARN/genética
11.
J Exp Bot ; 71(18): 5389-5401, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32497208

RESUMEN

Grain size is a major determinant of grain yield in sorghum and other cereals. Over 100 quantitative trait loci (QTLs) of grain size have been identified in sorghum. However, no gene underlying any grain size QTL has been cloned. Here, we describe the fine mapping and cloning of one grain size QTL. From an F8 recombinant inbred line population derived from a cross between inbred lines 654 and LTR108, we identified 44 grain size QTLs. One QTL, qTGW1a, was detected consistently on the long arm of chromosome 1 in the span of 4 years. Using the extreme recombinants from an F2:3 fine-mapping population, qTGW1a was delimited within a ~33 kb region containing three predicted genes. One of them, SORBI_3001G341700, predicted to encode a G-protein γ subunit and homologous to GS3 in rice, is likely to be the causative gene for qTGW1a. qTGW1a appears to act as a negative regulator of grain size in sorghum. The functional allele of the putatively causative gene of qTGW1a from inbred line 654 decreased grain size, plant height, and grain yield in transgenic rice. Identification of the gene underlying qTGW1a advances our understanding of the regulatory mechanisms of grain size in sorghum and provides a target to manipulate grain size through genome editing.


Asunto(s)
Oryza , Sorghum , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Grano Comestible/genética , Oryza/genética , Fenotipo , Subunidades de Proteína , Sorghum/genética
12.
Plant Cell ; 28(7): 1551-62, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27354556

RESUMEN

Sorghum (Sorghum bicolor) is a versatile C4 crop and a model for research in family Poaceae. High-quality genome sequence is available for the elite inbred line BTx623, but functional validation of genes remains challenging due to the limited genomic and germplasm resources available for comprehensive analysis of induced mutations. In this study, we generated 6400 pedigreed M4 mutant pools from EMS-mutagenized BTx623 seeds through single-seed descent. Whole-genome sequencing of 256 phenotyped mutant lines revealed >1.8 million canonical EMS-induced mutations, affecting >95% of genes in the sorghum genome. The vast majority (97.5%) of the induced mutations were distinct from natural variations. To demonstrate the utility of the sequenced sorghum mutant resource, we performed reverse genetics to identify eight genes potentially affecting drought tolerance, three of which had allelic mutations and two of which exhibited exact cosegregation with the phenotype of interest. Our results establish that a large-scale resource of sequenced pedigreed mutants provides an efficient platform for functional validation of genes in sorghum, thereby accelerating sorghum breeding. Moreover, findings made in sorghum could be readily translated to other members of the Poaceae via integrated genomics approaches.


Asunto(s)
Sorghum/genética , Genoma de Planta/genética , Genotipo , Mutación/genética , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Poaceae/genética , Poaceae/fisiología , Sorghum/fisiología
13.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597271

RESUMEN

As in other cereal crops, the panicles of sorghum (Sorghum bicolor (L.) Moench) comprise two types of floral spikelets (grass flowers). Only sessile spikelets (SSs) are capable of producing viable grains, whereas pedicellate spikelets (PSs) cease development after initiation and eventually abort. Consequently, grain number per panicle (GNP) is lower than the total number of flowers produced per panicle. The mechanism underlying this differential fertility is not well understood. To investigate this issue, we isolated a series of ethyl methane sulfonate (EMS)-induced multiseeded (msd) mutants that result in full spikelet fertility, effectively doubling GNP. Previously, we showed that MSD1 is a TCP (Teosinte branched/Cycloidea/PCF) transcription factor that regulates jasmonic acid (JA) biosynthesis, and ultimately floral sex organ development. Here, we show that MSD2 encodes a lipoxygenase (LOX) that catalyzes the first committed step of JA biosynthesis. Further, we demonstrate that MSD1 binds to the promoters of MSD2 and other JA pathway genes. Together, these results show that a JA-induced module regulates sorghum panicle development and spikelet fertility. The findings advance our understanding of inflorescence development and could lead to new strategies for increasing GNP and grain yield in sorghum and other cereal crops.


Asunto(s)
Ciclopentanos/metabolismo , Fertilidad , Oxilipinas/metabolismo , Desarrollo de la Planta , Sorghum/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Grano Comestible , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Sorghum/clasificación , Factores de Transcripción/metabolismo
14.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661847

RESUMEN

Grain number per panicle is an important component of grain yield in sorghum (Sorghum bicolor (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 (MSD1) and MSD2 genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions. Here, we report the identification of another gene, MSD3, which is also involved in the regulation of grain numbers in sorghum. Four bulked F2 populations from crosses between BTx623 and each of the independent msd mutants p6, p14, p21, and p24 were sequenced to 20× coverage of the whole genome on a HiSeq 2000 system. Bioinformatic analyses of the sequence data showed that one gene, Sorbi_3001G407600, harbored homozygous mutations in all four populations. This gene encodes a plastidial ω-3 fatty acid desaturase that catalyzes the conversion of linoleic acid (18:2) to linolenic acid (18:3), a substrate for jasmonic acid (JA) biosynthesis. The msd3 mutants had reduced levels of linolenic acid in both leaves and developing panicles that in turn decreased the levels of JA. Furthermore, the msd3 panicle phenotype was reversed by treatment with methyl-JA (MeJA). Our characterization of MSD1, MSD2, and now MSD3 demonstrates that JA-regulated processes are critical to the msd phenotype. The identification of the MSD3 gene reveals a new target that could be manipulated to increase grain number per panicle in sorghum, and potentially other cereal crops, through the genomic editing of MSD3 functional orthologs.


Asunto(s)
Productos Agrícolas/enzimología , Ciclopentanos/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Oxilipinas/metabolismo , Sorghum/enzimología , Alelos , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Ciclopentanos/farmacología , Grano Comestible/efectos de los fármacos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Mutación , Oxilipinas/farmacología , Fenotipo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Sorghum/metabolismo , Ácido alfa-Linolénico/biosíntesis , Ácido alfa-Linolénico/química
15.
BMC Plant Biol ; 18(1): 11, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29320985

RESUMEN

BACKGROUND: Photosynthetic systems are known to be sensitive to high temperature stress. To maintain a relatively "normal" level of photosynthetic activities, plants employ a variety of adaptive mechanisms in response to environmental temperature fluctuations. Previously, we reported that the chloroplast-targeted AtFtsH11 protease played an essential role for Arabidopsis plants to survive at high temperatures and to maintain normal photosynthetic efficiency at moderately elevated temperature. To investigate the factors contributing to the photosynthetic changes in FtsH11 mutant, we performed detailed chlorophyll fluorescence analyses of dark-adapted mutant plants and compared them to Col-0 WT plants under normal, two moderate high temperatures, and a high light conditions. RESULTS: We found that mutation of FtsH11 gene caused significant decreases in photosynthetic efficiency of photosystems when environmental temperature raised above optimal. Under moderately high temperatures, the FtsH11 mutant showed significant 1) decreases in electron transfer rates of photosystem II (PSII) and photosystem I (PSI), 2) decreases in photosynthetic capabilities of PSII and PSI, 3) increases in non-photochemical quenching, and a host of other chlorophyll fluorescence parameter changes. We also found that the degrees of these negative changes for utilizing the absorbed light energy for photosynthesis in FtsH11 mutant were correlated with the level and duration of the heat treatments. For plants grown under normal temperature and subjected to the high light treatment, no significant difference in chlorophyll fluorescence parameters was found between the FtsH11 mutant and Col-0 WT plants. CONCLUSIONS: The results of this study show that AtFtsH11 is essential for normal photosynthetic function under moderately elevated temperatures. The results also suggest that the network mediated by AtFtsH11 protease plays critical roles for maintaining the thermostability and possibly structural integrity of both photosystems under elevated temperatures. Elucidating the underlying mechanisms of FtsH11 protease in photosystems may lead to improvement of photosynthetic efficiency under heat stress conditions, hence, plant productivity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Clorofila/metabolismo , Calor , Luz , Metaloproteasas/genética , Fotosíntesis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fluorescencia , Metaloproteasas/metabolismo , Mutación , Fotosíntesis/genética
16.
Plant J ; 88(6): 1006-1021, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27541077

RESUMEN

Polyamines involve in gene regulation by interacting with and modulating the functions of various anionic macromolecules such as DNA, RNA and proteins. In this study, we identified an important function of the polyamine transporter LHR1 (LOWER EXPRESSION OF HEAT RESPONSIVE GENE1) in heat-inducible gene expression in Arabidopsis thaliana. The lhr1 mutant was isolated through a forward genetic screening for altered expression of the luciferase reporter gene driven by the promoter from the heat-inducible gene AtHSP18.2. The lhr1 mutant showed reduced induction of the luciferase gene in response to heat stress and was more sensitive to high temperature than the wild type. Map-based cloning identified that the LHR1 gene encodes the polyamine transporter PUT3 (POLYAMINE UPTAKE TRANSPORTER 3) localized in the plasma membrane. The LHR1/PUT3 is required for the uptake of extracellular polyamines and plays an important role in stabilizing the mRNAs of several crucial heat stress responsive genes under high temperature. Genome-wide gene expression analysis using RNA-seq identified an array of differentially expressed genes, among which the transcript levels of some of the heat shock protein genes significantly reduced in response to prolonged heat stress in the lhr1 mutant. Our findings revealed an important heat stress response and tolerance mechanism involving polyamine influx which modulates mRNA stability of heat-inducible genes under heat stress conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Choque Térmico/metabolismo , Estabilidad del ARN/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Choque Térmico/genética , Calor , Estabilidad del ARN/fisiología
17.
Plant J ; 86(4): 349-59, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26959378

RESUMEN

Screening large populations for carriers of known or de novo rare single nucleotide polymorphisms (SNPs) is required both in Targeting induced local lesions in genomes (TILLING) experiments in plants and in screening of human populations. We previously suggested an approach that combines the mathematical field of compressed sensing with next-generation sequencing to allow such large-scale screening. Based on pooled measurements, this method identifies multiple carriers of heterozygous or homozygous rare alleles while using only a small fraction of resources. Its rigorous mathematical foundations allow scalable and robust detection, and provide error correction and resilience to experimental noise. Here we present a large-scale experimental demonstration of our computational approach, in which we targeted a TILLING population of 1024 Sorghum bicolor lines to detect carriers of de novo SNPs whose frequency was less than 0.1%, using only 48 pools. Subsequent validation confirmed that all detected lines were indeed carriers of the predicted mutations. This novel approach provides a highly cost-effective and robust tool for biologists and breeders to allow identification of novel alleles and subsequent functional analysis.


Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Sorghum/genética , Alelos , Biología Computacional/métodos , Genes de Plantas , Heterocigoto
18.
BMC Plant Biol ; 17(1): 12, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086798

RESUMEN

BACKGROUND: Climate variability due to fluctuation in temperature is a worldwide concern that imperils crop production. The need to understand how the germplasm variation in major crops can be utilized to aid in discovering and developing breeding lines that can withstand and adapt to temperature fluctuations is more necessary than ever. Here, we analyzed the genetic variation associated with responses to thermal stresses in a sorghum association panel (SAP) representing major races and working groups to identify single nucleotide polymorphisms (SNPs) that are associated with resilience to temperature stress in a major cereal crop. RESULTS: The SAP exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified 30 SNPs that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act as regulators of anthocyanin expression and soluble carbohydrate metabolism. Meanwhile, 12 SNPs were significantly associated with seedling traits under heat stress and these SNPs tagged genes that function in sugar metabolism, and ion transport pathways. Evaluation of co-expression networks for genes near the significantly associated SNPs indicated complex gene interactions for cold and heat stresses in sorghum. We focused and validated the expression of four genes in the network of Sb06g025040, a basic-helix-loop-helix (bHLH) transcription factor that was proposed to be involved in purple color pigmentation of leaf, and observed that genes in this network were upregulated during cold stress in a moderately tolerant line as compared to the more sensitive line. CONCLUSION: This study facilitated the tagging of genome regions associated with variation in seedling traits of sorghum under cold and heat stress. These findings show the potential of genotype information for development of temperature resilient sorghum cultivars and further characterization of genes and their networks responsible for adaptation to thermal stresses. Knowledge on the gene networks from this research can be extended to the other cereal crops to better understand the genetic basis of resilience to temperature fluctuations during plant developmental stages.


Asunto(s)
Respuesta al Choque Térmico , Semillas/fisiología , Sorghum/genética , Sorghum/fisiología , Redes Reguladoras de Genes , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Plantones/genética , Semillas/genética , Termotolerancia/genética
19.
Planta ; 255(4): 83, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35262803
20.
Biometals ; 30(5): 765-785, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28936772

RESUMEN

Copper (Cu) is a important micronutrient for plants, but it is extremely toxic to plants at high concentration and can inactivate and disturb protein structures. To explore the Cu stress-induced tolerance mechanism, the present study was conducted on the roots of sorghum seedlings exposed to 50 and 100 µM CuSO4 for 5 days. Accumulation of Cu increased in roots when the seedlings were treated with the highest concentration of Cu2+ ions (100 µM). Elevated Cu concentration provoked notable reduction of Fe, Zn, Ca, and Mn uptake in the roots of sorghum seedlings. In the proteome analysis, high-throughput two-dimensional polyacrylamide gel electrophoresis combined with MALDI-TOF-TOF MS was performed to explore the molecular responses of Cu-induced sorghum seedling roots. In two-dimensional silver-stained gels, 422 protein spots were identified in the 2-D gel whereas twenty-one protein spots (≥1.5-fold) were used to analyze mass spectrometry from Cu-induced sorghum roots. Among the 21 differentially expressed proteins, 10 proteins were increased, while 11 proteins were decreased due to the intake of Cu ions by roots of sorghum. Abundance of most of the identified proteins from the roots that function in stress response and metabolism was remarkably enhanced, while proteins involved in transcription and regulation were severely reduced. Taken together, these results imply insights into a potential molecular mechanism towards Cu stress in C4 plant, sorghum.


Asunto(s)
Cobre/toxicidad , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/efectos de los fármacos , Proteoma/genética , Plantones/efectos de los fármacos , Adaptación Fisiológica/genética , Calcio/metabolismo , Cationes Bivalentes , Ontología de Genes , Transporte Iónico/efectos de los fármacos , Hierro/metabolismo , Manganeso/metabolismo , Anotación de Secuencia Molecular , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteoma/metabolismo , Plantones/genética , Plantones/metabolismo , Sorghum , Estrés Fisiológico , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA