Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Metab ; 114(2): 209-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25559179

RESUMEN

Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder caused by the deficiency of the enzyme ß-glucuronidase (Gusb(-/-)) and results in glycosaminoglycan (GAG) accumulation. Skeletal abnormalities include stunted long bones and bone degeneration. GAGs have been hypothesized to activate toll-like receptor 4 (Tlr4) signaling and the complement pathway, resulting in upregulation of inflammatory cytokines that suppress growth and cause degeneration of the bone. Gusb(-/-) mice were bred with Tlr4- and complement component 3 (C3)-deficient mice, and the skeletal manifestations of the doubly- and triply-deficient mice were compared to those of purebred Gusb(-/-) mice. Radiographs showed that purebred Gusb(-/-) mice had shorter tibias and femurs, and wider femurs, compared to normal mice. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice. The glenoid cavity and humerus were scored on a scale from 0 (normal) to +3 (severely abnormal) for dysplasia and bone irregularities, and the joint space was measured. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice, and their joint space remained abnormally wide. Gusb(-/-) mice treated neonatally with an intravenous retroviral vector (RV) had thinner femurs, longer legs, and a narrowed joint space compared with untreated purebred Gusb(-/-) mice, but no improvement in glenohumeral degeneration. We conclude that Tlr4- and/or C3-deficiency fail to ameliorate skeletal abnormalities, and other pathways may be involved. RV treatment improves some but not all aspects of bone disease. Radiographs may be an efficient method for future evaluation, as they readily show glenohumeral joint abnormalities.


Asunto(s)
Enfermedades Óseas/terapia , Complemento C3/deficiencia , Terapia Genética , Glucuronidasa/genética , Mucopolisacaridosis VII/terapia , Receptor Toll-Like 4/deficiencia , Animales , Animales Recién Nacidos , Enfermedades Óseas/diagnóstico por imagen , Complemento C3/genética , Modelos Animales de Enfermedad , Fémur/diagnóstico por imagen , Vectores Genéticos , Cavidad Glenoidea/diagnóstico por imagen , Húmero/diagnóstico por imagen , Ratones , Mucopolisacaridosis VII/diagnóstico por imagen , Mutación , Radiografía , Tibia/diagnóstico por imagen , Receptor Toll-Like 4/genética
2.
Mol Genet Metab ; 109(2): 183-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23628461

RESUMEN

Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of ß-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term.


Asunto(s)
Glucuronidasa/genética , Mucopolisacaridosis VII/terapia , Animales , Animales Recién Nacidos , Perros , Femenino , Cabeza Femoral/patología , Terapia Genética , Glucuronidasa/metabolismo , Miembro Posterior/patología , Cápsula Articular/irrigación sanguínea , Cápsula Articular/enzimología , Articulaciones/patología , Masculino , Mucopolisacaridosis VII/diagnóstico por imagen , Mucopolisacaridosis VII/patología , Radiografía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA