Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Adv Mater ; 34(26): e2108261, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35435286

RESUMEN

The primary mechanism of optical memoristive devices relies on phase transitions between amorphous and crystalline states. The slow or energy-hungry amorphous-crystalline transitions in optical phase-change materials are detrimental to the scalability and performance of devices. Leveraging an integrated photonic platform, nonvolatile and reversible switching between two layered structures of indium selenide (In2 Se3 ) triggered by a single nanosecond pulse is demonstrated. The high-resolution pair distribution function reveals the detailed atomistic transition pathways between the layered structures. With interlayer "shear glide" and isosymmetric phase transition, switching between the α- and ß-structural states contains low re-configurational entropy, allowing reversible switching between layered structures. Broadband refractive index contrast, optical transparency, and volumetric effect in the crystalline-crystalline phase transition are experimentally characterized in molecular-beam-epitaxy-grown thin films and compared to ab initio calculations. The nonlinear resonator transmission spectra measure of incremental linear loss rate of 3.3 GHz, introduced by a 1.5 µm-long In2 Se3 -covered layer, resulted from the combinations of material absorption and scattering.

2.
Materials (Basel) ; 13(23)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297383

RESUMEN

As an anisotropic material, the unique optoelectronic properties of black phosphorus are obviously anisotropic. Therefore, non-destructive and fast identification of its crystalline orientation is an important condition for its application in optoelectronics research field. Identifying the crystalline orientation of black phosphorus through Ag1 and Ag2 modes under the parallel polarization has high requirements on the Raman system, while in the nonanalyzer configuration, the crystalline orientation of the thick black phosphorus may not be identified through Ag1 and Ag2 modes. This work proposes a new method to identify the crystalline orientation of black phosphorus of different thicknesses. This method is conducted under the nonanalyzer configuration by B2g mode. The results show that B2g mode has a good consistency in the identification of crystalline orientations. In this paper, a theoretical model is established to study the angle-resolved Raman results of B2g mode. The new method can accurately identify the crystalline orientation with different layers of black phosphorus without misidentification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA