RESUMEN
Metal-zeolite composites with metal (oxide) and acid sites are promising catalysts for integrating multiple reactions in tandem to produce a wide variety of wanted products without separating or purifying the intermediates. However, the conventional design of such materials often leads to uncontrolled and non-ideal spatial distributions of the metal inside/on the zeolites, limiting their catalytic performance. Here we demonstrate a simple strategy for synthesizing double-shelled, contiguous metal oxide@zeolite hollow spheres (denoted as MO@ZEO DSHSs) with controllable structural parameters and chemical compositions. This involves the self-assembly of zeolite nanocrystals onto the surface of metal ion-containing carbon spheres followed by calcination and zeolite growth steps. The step-by-step formation mechanism of the material is revealed using mainly in situ Raman spectroscopy and X-ray diffraction and ex situ electron microscopy. We demonstrate that it is due to this structure that an Fe2O3@H-ZSM-5 DSHSs-showcase catalyst exhibits superior performance compared with various conventionally structured Fe2O3-H-ZSM-5 catalysts in gasoline production by the Fischer-Tropsch synthesis. This work is expected to advance the rational synthesis and research of hierarchically hollow, core-shell, multifunctional catalyst materials.
RESUMEN
For high caloricity and stability in bio-aviation fuels, a certain content of aromatic hydrocarbons (AHCs, 8-25 wt%) is crucial. Fatty acids, obtained from waste or inedible oils, are a renewable and economic feedstock for AHC production. Considerable amounts of AHCs, up to 64.61 wt%, were produced through the one-step hydroprocessing of fatty acids over Ni/HZSM-5 catalysts. Hydrogenation, hydrocracking, and aromatization constituted the principal AHC formation processes. At a lower temperature, fatty acids were first hydrosaturated and then hydrodeoxygenated at metal sites to form long-chain hydrocarbons. Alternatively, the unsaturated fatty acids could be directly deoxygenated at acid sites without first being saturated. The long-chain hydrocarbons were cracked into gases such as ethane, propane, and C6-C8 olefins over the catalysts' Brønsted acid sites; these underwent Diels-Alder reactions on the catalysts' Lewis acid sites to form AHCs. C6-C8 olefins were determined as critical intermediates for AHC formation. As the Ni content in the catalyst increased, the Brønsted-acid site density was reduced due to coverage by the metal nanoparticles. Good performance was achieved with a loading of 10 wt% Ni, where the Ni nanoparticles exhibited a polyhedral morphology which exposed more active sites for aromatization.
RESUMEN
Close proximity usually shortens the travel distance of reaction intermediates, thus able to promote the catalytic performance of CO2 hydrogenation by a bifunctional catalyst, such as the widely reported In2O3/H-ZSM-5. However, nanoscale proximity (e.g., powder mixing, PM) more likely causes the fast deactivation of the catalyst, probably due to the migration of metals (e.g., In) that not only neutralizes the acid sites of zeolites but also leads to the reconstruction of the In2O3 surface, thus resulting in catalyst deactivation. Additionally, zeolite coking is another potential deactivation factor when dealing with this methanol-mediated CO2 hydrogenation process. Herein, we reported a facile approach to overcome these three challenges by coating a layer of silicalite-1 (S-1) shell outside a zeolite H-ZSM-5 crystal for the In2O3/H-ZSM-5-catalyzed CO2 hydrogenation. More specifically, the S-1 layer (1) restrains the migration of indium that preserved the acidity of H-ZSM-5 and at the same time (2) prevents the over-reduction of the In2O3 phase and (3) improves the catalyst lifetime by suppressing the aromatic cycle in a methanol-to-hydrocarbon conversion step. As such, the activity for the synthesis of C2 + hydrocarbons under nanoscale proximity (PM) was successfully obtained. Moreover, an enhanced performance was observed for the S-1-coated catalyst under microscale proximity (e.g., granule mixing, GM) in comparison to the S-1-coating-free counterpart. This work highlights an effective shielding strategy to secure the bifunctional nature of a CO2 hydrogenation catalyst.
RESUMEN
Sanger's reaction, which was originally developed for amino acid detection, was utilized for enzyme immobilization. The newly synthesized polymer support, which was called polymer NO2-4-fluorostyrene-divinylbenzene (pNFD), was embedded with a Sanger's reagent-like functional group for immobilizing enzymes covalently under mild reaction conditions. Using Burkholderia cepacia lipase (BCL) as the target enzyme, the immobilization efficiency and activity of pNFD-BCL reached as high as 1.2 mg·g-1 and 33.21 U·g-1 (a specific activity of 27 675 U·g-1), respectively, realizing 90% activity recovery. It also improved the optimal reaction temperature of BCL from 40 to 65 °C, under which its full activity could be retained for 4 h. The new carrier also widened the pH-adaptive range of BCL as 6.5-10.0, allowing the lipase to operate normally in weak acid environment. Reusability of pNFD-BCL was significantly improved as almost no activity and/or enantioselectivity loss was observed in 200 h of triglyceride hydrolysis reaction and 17 batches of ( R, S)-1-phenylethanol resolution reaction.
Asunto(s)
Enzimas Inmovilizadas/química , Lipasa/metabolismo , Polímeros/química , Estirenos/química , Burkholderia cepacia/enzimología , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Lipasa/química , TemperaturaRESUMEN
Tahyna virus (TAHV) was first isolated from mosquitoes collected in the suburbs of Geermu city in the Qinghai-Tibet Plateau of China in 2007. Since then, TAHV antibodies have been detected in local livestock in Geermu, Qinghai. To determine whether the disease caused by TAHV was present in local residents, an investigation was conducted in the summer of 2009. During this investigation, ward inspections were conducted in rural clinics, and clinical information and specimens were collected from patients who complained mainly of acute fever. The collected samples were tested by serological and molecular methods. The results showed that four samples were positive for TAHV immunoglobulin M and had four-fold or higher levels of TAHV-neutralizing antibody titers between convalescent-phase and acute-phase, and that TAHV nucleotide sequences were detected in two acute sera. Clinical features of TAHV infection commonly included fever, accounting for 100%. Among all other symptoms, the one with the highest frequency was pharyngitis (80%), followed by malaise, inappetence, arthralgia, headache, and drowsiness. Follow-up surveys revealed that all cases recovered in 2-5 days after onset, and no serious or deadly cases were observed. This is the first time that the disease caused by TAHV infection has been reported in China. TAHV infection is another known mosquito-borne arboviral disease in China.