Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(15): 24887-24896, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475305

RESUMEN

The physics associated with multipartite high-dimensional entanglement is different from that of multipartite two-dimensional entanglement. Therefore, preparing multipartite high-dimensional entanglements with linear optics is challenging. This study proposes a preparation protocol of multiphoton GHZ state with arbitrary dimensions for optical systems. Auxiliary entanglements realize a high-dimensional entanglement gate to connect the high-dimensional entangled pairs to a multipartite high-dimensional GHZ state. Specifically, we use the path degrees of freedom of photons to prepare a four-partite, three-dimensional GHZ state. Our method can be extended to other degrees of freedom to generate arbitrary GHZ entanglements in any dimension.

2.
Phys Rev Lett ; 129(6): 060402, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36018648

RESUMEN

Violation of Bell's inequalities shows strong conflict between quantum mechanics and local realism. Loophole-free Bell tests not only deepen understanding of quantum mechanics, but are also important foundations for device-independent (DI) tasks in quantum information. High-dimensional quantum systems offer a significant advantage over qubits for closing the detection loophole. In the symmetric scenario, a detection efficiency as low as 61.8% can be tolerated using four-dimensional states and a four-setting Bell inequality [Phys. Rev. Lett. 104, 060401 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.060401]. For the first time, we show that four-dimensional entangled photons violate a Bell inequality while closing the detection loophole in experiment. The detection efficiency of the four-dimensional entangled source is about 71.7%, and the fidelity of the state is 0.995±0.001. Combining the technique of multicore fibers, the realization of loophole-free high-dimensional Bell tests and high-dimensional quantum DI technologies are promising.

3.
Phys Rev Lett ; 126(1): 010503, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480791

RESUMEN

High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a key role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and were demonstrated in tabletop. Here we propose and report a high-efficiency and long-distance entanglement purification using only one pair of hyperentangled state. We also demonstrate its practical application in entanglement-based quantum key distribution (QKD). One pair of polarization spatial-mode hyperentanglement was distributed over 11 km multicore fiber (noisy channel). After purification, the fidelity of polarization entanglement arises from 0.771 to 0.887 and the effective key rate in entanglement-based QKD increases from 0 to 0.332. The values of Clauser-Horne-Shimony-Holt inequality of polarization entanglement arises from 1.829 to 2.128. Moreover, by using one pair of hyperentanglement and deterministic controlled-NOT gates, the total purification efficiency can be estimated as 6.6×10^{3} times than the experiment using two pairs of entangled states with spontaneous parametric down-conversion sources. Our results offer the potential to be implemented as part of a full quantum repeater and large-scale quantum network.

4.
Phys Rev Lett ; 127(22): 220501, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34889633

RESUMEN

Entanglement detection is one of the most conventional tasks in quantum information processing. While most experimental demonstrations of high-dimensional entanglement rely on fidelity-based witnesses, these are powerless to detect entanglement within a large class of entangled quantum states, the so-called unfaithful states. In this Letter, we introduce a highly flexible automated method to construct optimal tests for entanglement detection given a bipartite target state of arbitrary dimension, faithful or unfaithful, and a set of local measurement operators. By restricting the number or complexity of the considered measurement settings, our method outputs the most convenient protocol which can be implemented using a wide range of experimental techniques such as photons, superconducting qudits, cold atoms, or trapped ions. With an experimental quantum optics setup that can prepare and measure arbitrary high-dimensional mixed states, we implement some three-setting protocols generated by our method. These protocols allow us to experimentally certify two- and three-unfaithful entanglement in four-dimensional photonic states, some of which contain well above 50% of noise.

5.
Phys Rev Lett ; 127(11): 110505, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34558943

RESUMEN

Entanglement-based quantum communication offers an increased level of security in practical secret shared key distribution. One of the fundamental principles enabling this security-the fact that interfering with one photon will destroy entanglement and thus be detectable-is also the greatest obstacle. Random encounters of traveling photons, losses, and technical imperfections make noise an inevitable part of any quantum communication scheme, severely limiting distance, key rate, and environmental conditions in which quantum key distribution can be employed. Using photons entangled in their spatial degree of freedom, we show that the increased noise resistance of high-dimensional entanglement can indeed be harnessed for practical key distribution schemes. We perform quantum key distribution in eight entangled paths at various levels of environmental noise and show key rates that, even after error correction and privacy amplification, still exceed 1 bit per photon pair and furthermore certify a secure key at noise levels that would prohibit comparable qubit based schemes from working.

6.
Phys Rev Lett ; 125(9): 090503, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32915593

RESUMEN

High-dimensional entanglement promises to greatly enhance the performance of quantum communication and enable quantum advantages unreachable by qubit entanglement. One of the great challenges, however, is the reliable production, distribution, and local certification of high-dimensional sources of entanglement. In this Letter, we present an optical setup capable of producing quantum states with an exceptionally high level of scalability, control, and quality that, together with novel certification techniques, achieve the highest amount of entanglement recorded so far. We showcase entanglement in 32-spatial dimensions with record fidelity to the maximally entangled state (F=0.933±0.001) and introduce measurement efficient schemes to certify entanglement of formation (E_{oF}=3.728±0.006). Combined with the existing multicore fiber technology, our results will lay a solid foundation for the construction of high-dimensional quantum networks.

7.
Phys Rev Lett ; 125(23): 230501, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337185

RESUMEN

Quantum teleportation provides a way to transmit unknown quantum states from one location to another. In the quantum world, multilevel systems which enable high-dimensional systems are more prevalent. Therefore, to completely rebuild the quantum states of a single particle remotely, one needs to teleport multilevel (high-dimensional) states. Here, we demonstrate the teleportation of high-dimensional states in a three-dimensional six-photon system. We exploit the spatial mode of a single photon as the high-dimensional system, use two auxiliary entangled photons to realize a deterministic three-dimensional Bell state measurement. The fidelity of teleportation process matrix is F=0.596±0.037. Through this process matrix, we can prove that our teleportation is both nonclassical and genuine three dimensional. Our work paves the way to rebuild complex quantum systems remotely and to construct complex quantum networks.

8.
Front Bioeng Biotechnol ; 12: 1305614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633667

RESUMEN

Due to high proliferative capacity, multipotent differentiation, immunomodulatory abilities, and lack of ethical concerns, dental pulp stem cells (DPSCs) are promising candidates for clinical application. Currently, clinical research on DPSCs is in its early stages. The reason for the failure to obtain clinically effective results may be problems with the production process of DPSCs. Due to the different preparation methods and reagent formulations of DPSCs, cell characteristics may be affected and lead to inconsistent experimental results. Preparation of clinical-grade DPSCs is far from ready. To achieve clinical application, it is essential to transit the manufacturing of stem cells from laboratory grade to clinical grade. This review compares and analyzes experimental data on optimizing the preparation methods of DPSCs from extraction to resuscitation, including research articles, invention patents and clinical trials. The advantages and disadvantages of various methods and potential clinical applications are discussed, and factors that could improve the quality of DPSCs for clinical application are proposed. The aim is to summarize the current manufacture of DPSCs in the establishment of a standardized, reliable, safe, and economic method for future preparation of clinical-grade cell products.

9.
Micromachines (Basel) ; 15(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38675296

RESUMEN

The first quantum revolution has brought us the classical Internet and information technology. Today, as technology advances rapidly, the second quantum revolution quietly arrives, with a crucial moment for quantum technology to establish large-scale quantum networks. However, solid-state quantum bits (such as superconducting and semiconductor qubits) typically operate in the microwave frequency range, making it challenging to transmit signals over long distances. Therefore, there is an urgent need to develop quantum transducer chips capable of converting microwaves into optical photons in the communication band, since the thermal noise of optical photons at room temperature is negligible, rendering them an ideal information carrier for large-scale spatial communication. Such devices are important for connecting different physical platforms and efficiently transmitting quantum information. This paper focuses on the fast-developing field of optomechanical quantum transducers, which has flourished over the past decade, yielding numerous advanced achievements. We categorize transducers based on various mechanical resonators and discuss their principles of operation and their achievements. Based on existing research on optomechanical transducers, we compare the parameters of several mechanical resonators and analyze their advantages and limitations, as well as provide prospects for the future development of quantum transducers.

10.
Front Immunol ; 14: 1284868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077342

RESUMEN

Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.


Asunto(s)
Pulpa Dental , Células Madre , Animales , Diferenciación Celular , Inflamación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
11.
Front Med (Lausanne) ; 10: 1160053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035335

RESUMEN

The development of liver fibrosis primarily determines quality of life as well as prognosis. Animal models are often used to model and understand the underlying mechanisms of human disease. Although organoids can be used to simulate organ development and disease, the technology still faces significant challenges. Therefore animal models are still irreplaceable at this stage. Currently, in vivo models of liver fibrosis can be classified into five categories based on etiology: chemical, dietary, surgical, transgenic, and immune. There is a wide variety of animal models of liver fibrosis with varying efficacy, which have different implications for proper understanding of the disease and effective screening of therapeutic agents. There is no high-quality literature recommending the most appropriate animal models. In this paper, we will describe the progress of commonly used animal models of liver fibrosis in terms of their development mechanisms, applications, advantages and disadvantages, and recommend appropriate animal models for different research purposes.

12.
World J Stem Cells ; 15(10): 960-978, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37970238

RESUMEN

Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA