Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 47(5): 1243-1254, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35084661

RESUMEN

Hypoxic-ischemic brain damage (HIBD) is a familiar neurological disorder. Emerging reports manifest that microRNAs (miRs) are related to the progression of HIBD. The goal of this study is to explore the mechanism of miR-192-5p in HIBD via regulation of Yes-associated protein 1 (YAP1)-mediated Hippo signaling pathway. The miR-192-5p, YAP1, and Hippo pathway-related factors Phospho (p)-Triaminoguanidinium azide (TAZ) in hippocampal tissues and neurons were detected. The regulatory relationship between miR-192-5p and YAP1 was verified. Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. The neurobehavioral impairment, neuronal damage and vascular endothelial growth factor (VEGF) expression of neonatal rats in each group were detected. The viability, apoptosis and VEGF expression of hippocampal neurons in each group were also examined. MiR-192-5p expression was elevated while YAP1 expression was reduced in hippocampal tissues of HIBD rats in vivo and OGD neurons in vitro. MiR-192-5p had a targeting relation with YAP1. Suppressed miR-192-5p or overexpressed YAP1 in HIBD rats alleviated neurobehavioral impairment and neuronal damage, and decreased the expression levels of p-TAZ and VEGF expression in vivo. Reduced miR-192-5p or augmented YAP1 decelerated the neuron apoptosis, decreased the p-TAZ level and VEGF level and promoted cell viability of OGD hippocampal neurons in vitro. The study highlights that inhibited miR-192-5p protects against HIBD via regulation of YAP1 and Hippo signaling pathway, which is beneficial for HIBD treatment.


Asunto(s)
Hipoxia-Isquemia Encefálica , MicroARNs , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Modelos Animales de Enfermedad , Vía de Señalización Hippo , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , MicroARNs/metabolismo , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Señalizadoras YAP
2.
ChemSusChem ; 17(2): e202301065, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37794829

RESUMEN

MnNb2 O6 anode has attracted much attention owing to its unique properties for holding Li ions. Unluckily, its application as a Li-ion battery anode is restricted by low capacity because of the inferior electronic conductivity and limited electron transfer. Previous studies suggest that structure and component optimization could improve its reversible capacity. This improvement is always companied by capacity increments, however, the reasons have rarely been identified. Herein, MnNb2 O6 -C nanofibers (NFs) with MnNb2 O6 nanoparticles (~15 nm) confined in carbon NFs, and the counterpart MnNb2 O6 NFs consisting of larger nanoparticles (40-100 nm) are prepared by electrospinning for clarifying this phenomenon. The electrochemical evaluations indicate that the capacity achieved by the MnNb2 O6 NF electrode presents an activation process and a degradation in subsequence. Meanwhile, the MnNb2 O6 -C NF electrode delivers high reversible capacity and ultra-stable cycling performance. Further analysis based on electrochemical behaviors and microstructure changes reveals that the partial structure rearrangement should be in charge of the capacity increment, mainly including pseudocapacitance increment. This work suggests that diminishing the dimensions of MnNb2 O6 nanoparticles and further confining them in a matrix could increase the pseudocapacitance-dominated capacity, providing a novel way to improve the reversible capacity of MnNb2 O6 and other intercalation reaction anodes.

3.
J Oncol ; 2022: 2514555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35794987

RESUMEN

The aim of this study was to investigate the effect of vestibular disruption on autophagy-related proteins and the tumour-associated pathway P13K/Akt in rat sleep and its hypothalamus tissue and to examine whether catechins trigger tumour autophagy. Healthy adult male rats were randomly selected and divided into the vestibular damage group, the sham operation group, and the control group, with 8 rats in each group. A vestibular damage model was established through penetrating the tympanic membrane of the external auditory canal by injecting sodium p-aminophenylarsonate. The electroencephalogram (EGG) activity was used to record the sleep-wakefulness cycle of rats, and the expression levels of hypothalamic orexin (orexin) mRNA and autophagy proteins were detected. Primary hippocampal neurons were intervened with orexin at different concentrations and at different times to detect cell viability and the expression of autophagy protein and P13K/Akt signal pathway protein. The results showed that compared with the control group and the sham operation group, NREM duration in the vestibular damage group decreased significantly (P < 0.05), while its W time increased significantly (P < 0.05). The expression level of orexin mRNA in the hypothalamus of the vestibular damage group was significantly higher than that of the other two groups (P < 0.05), the expression of autophagy microtubule-related proteins LC3B and Beclin-1 increased significantly (P < 0.05), and the protein expression level of p62 decreased significantly (P < 0.05). After orexin intervention, compared with the control group, the expression of Beclin-1 protein that positively correlated with autophagy decreased significantly (P < 0.05) and the expression of mTOR, PDK1, and Akt protein increased significantly (P < 0.05). Compared with the orexin intervention group, the expression of Beclin-1 and LC3B proteins in cells of the orexin receptor inhibitor (Almorexant) group, the autophagy activator (Rapamycin) group, the orexin + Almorexant group, and the orexin + Rapamycin group increased significantly (P < 0.05), and the expression of mTOR, PDK1, and Akt proteins decreased significantly (P < 0.05). Catechins trigger autophagy in part by regulating the p-Akt/p-mTOR and P13K pathways and by stimulating the MAPK pathway. Catechins initiate apoptosis in common tumour types of hepatocellular carcinoma cells by activating autophagy-related pathways. The conclusion is that vestibular damage can affect the sleep-wakefulness cycle of rats; the level of autophagy in hypothalamic tissue is upregulated and may affect cell proliferation and activity through mTOR-P13K/Akt, which has a certain reference value for tumor formation and provides a basis for the research of insomnia or sleep disorders caused by tumors. Autophagy activation is a key process by which catechins promote apoptosis in tumour cells, providing an avenue for more research on the use of catechins-rich diets for cardiovascular protection in the treatment of tumours.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA