Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Microbiol ; 24(1): 224, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926818

RESUMEN

Multi-drug-resistant Staphylococcus aureus infections necessitate novel antibiotic development. D-3263, a transient receptor potential melastatin member 8 (TRPM8) agonist, has potential antineoplastic properties. Here, we reported the antibacterial and antibiofilm activities of D-3263. Minimum inhibitory concentrations (MICs) against S. aureus, Enterococcus faecalis and E. faecium were ≤ 50 µM. D-3263 exhibited bactericidal effects against clinical methicillin-resistant S. aureus (MRSA) and E. faecalis strains at 4× MIC. Subinhibitory D-3263 concentrations effectively inhibited S. aureus and E. faecalis biofilms, with higher concentrations also clearing mature biofilms. Proteomic analysis revealed differential expression of 29 proteins under 1/2 × MIC D-3263, influencing amino acid biosynthesis and carbohydrate metabolism. Additionally, D-3263 enhanced membrane permeability of S. aureus and E. faecalis. Bacterial membrane phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) dose-dependently increased D-3263 MICs. Overall, our data suggested that D-3263 exhibited potent antibacterial and antibiofilm activities against S. aureus by targeting the cell membrane.


Asunto(s)
Antibacterianos , Biopelículas , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteómica , Humanos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos
2.
BMC Biol ; 20(1): 188, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002819

RESUMEN

BACKGROUND: The blue-crowned laughingthrush (Garrulax courtoisi) is a critically endangered songbird endemic to Wuyuan, China, with population of ~323 individuals. It has attracted widespread attention, but the lack of a published genome has limited research and species protection. RESULTS: We report two laughingthrush genome assemblies and reveal the taxonomic status of laughingthrush species among 25 common avian species according to the comparative genomic analysis. The blue-crowned laughingthrush, black-throated laughingthrush, masked laughingthrush, white-browed laughingthrush, and rusty laughingthrush showed a close genetic relationship, and they diverged from a common ancestor between ~2.81 and 12.31 million years ago estimated by the population structure and divergence analysis using 66 whole-genome sequencing birds from eight laughingthrush species and one out group (Cyanopica cyanus). Population inference revealed that the laughingthrush species experienced a rapid population decline during the last ice age and a serious bottleneck caused by a cold wave during the Chinese Song Dynasty (960-1279 AD). The blue-crowned laughingthrush is still in a bottleneck, which may be the result of a cold wave together with human exploitation. Interestingly, the existing blue-crowned laughingthrush exhibits extremely rich genetic diversity compared to other laughingthrushes. These genetic characteristics and demographic inference patterns suggest a genetic heritage of population abundance in the blue-crowned laughingthrush. The results also suggest that fewer deleterious mutations in the blue-crowned laughingthrush genomes have allowed them to thrive even with a small population size. We believe that cooperative breeding behavior and a long reproduction period may enable the blue-crowned laughingthrush to maintain genetic diversity and avoid inbreeding depression. We identified 43 short tandem repeats that can be used as markers to identify the sex of the blue-crowned laughingthrush and aid in its genetic conservation. CONCLUSIONS: This study supplies the missing reference genome of laughingthrush, provides insight into the genetic variability, evolutionary potential, and molecular ecology of laughingthrush and provides a genomic resource for future research and conservation.


Asunto(s)
Passeriformes , Animales , Evolución Biológica , Cruzamiento , Variación Genética , Genoma , Genómica , Humanos , Passeriformes/genética
3.
Mol Genet Genomics ; 297(3): 655-670, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35253087

RESUMEN

Blue-crowned laughingthrush (Garrulax courtoisi), passeriformes, is a critically endangered bird endemic to China. Gut microbiota is well known to play a pivotal role in host health and survival. Thus, the understanding of the microbial communities associated with Garrulax courtoisi could be beneficial to save this species from the brink of extinction. In this study, we used 16 s rDNA amplicon sequencing to investigate the gut community composition and microbial diversity of the Garrulax courtoisi population reared in Nanchang Zoo. The results showed that there were 31 phyla that were dominated by Firmicutes, Proteobacteria, Bacteroidetes, and Cyanobacteria in the intestine of Garrulax courtoisi. Compared with previous studies on birds, the Cyanobacteria exhibited an excessive abundance, which may be largely related to the personal lifestyle of Garrulax courtoisi. At the genus level, a total of 552 genera were identified, among which, 21 key genera constituted the core microbiome, including some culturable bacterial genera such as Lactobacillus, Acinetobacter, and Deinococcus. In the meanwhile, we found that there were remarkable intraspecific differences both in terms of microbial community structures, representative biomarkers and predicted functions between the parental generation and their offspring of the population investigated in this study. Furthermore, we also summarized their different eating behaviors and predicted its association with gut microbiota. This study provided the needed pieces of information about these extremely rare birds, Garrulax courtoisi, whose community composition and microbial diversity are hardly known. Importantly, these findings could contribute to our knowledge of the gut health of Garrulax courtoisi and advance the comprehensive conservation of this endangered bird.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Passeriformes , Animales , Firmicutes/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Passeriformes/genética , ARN Ribosómico 16S/genética
4.
BMC Microbiol ; 22(1): 16, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996348

RESUMEN

BACKGROUND: Previous reports have demonstrated two thiazolidione derivatives (H2-60 and H2-81) can robustly inhibit the planktonic growth and biofilm formation of S. epidermidis and S. aureus by targeting the histidine kinase YycG. Whereas the antibacterial and anti-biofilm activity of these two thiazolidione derivatives (H2-60 and H2-81) against Enterococcus faecium remains elusive. Here, the pET28a-YycG recombinant plasmid were in vitro expressed in E. coli competent cell BL21 (DE3) and induced to express YycG' protein (conding HisKA and HATPase_c domain) by 0.5 mM IPTG and was purified by Ni - NTA agarose and then for the autophosphorylation test. Antimicrobial testing and time-killing assay were also be determined. Anti-biofilm activity of two derivatives with sub-MIC concentration towards positive biofilm producers of clinical E. faecium were detected using polystyrene microtiter plate and CLSM. RESULTS: The MICs of H2-60 and H2-81 in the clinical isolates of E. faecium were in the range from 3.125 mg/L to 25 mg/L. Moreover, either H2-60 or H2-81 showed the excellent bactericidal activity against E. faecium with monotherapy or its combination with daptomycin by time-killing assay. E. faecium planktonic cells can be decreased by H2-60 or H2-81 for more than 3 × log10 CFU/mL after 24 h treatment when combined with daptomycin. Furthermore, over 90% of E. faecium biofilm formation could markedly be inhibited by H2-60 and H2-81 at 1/4 × MIC value. In addition, the frequency of the eradicated viable cells embedded in mature biofilm were evaluated by the confocal laser microscopy, suggesting that of H2-60 combined with ampicillin or daptomycin was significantly high when compared with single treatment (78.17 and 74.48% vs. 41.59%, respectively, P < 0.01). CONCLUSION: These two thiazolidione derivatives (H2-60 and H2-81) could directly impact the kinase phosphoration activity of YycG of E. faecium. H2-60 combined with daptomycin exhibit the excellent antibacterial and anti-biofilm activity against E. faecium by targeting YycG.


Asunto(s)
Antibacterianos/farmacología , Daptomicina/farmacología , Enterococcus faecium/efectos de los fármacos , Tiazoles/farmacología , Ampicilina/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Sinergismo Farmacológico , Enterococcus faecium/enzimología , Enterococcus faecium/crecimiento & desarrollo , Infecciones por Bacterias Grampositivas/microbiología , Histidina Quinasa/antagonistas & inhibidores , Histidina Quinasa/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Recombinantes/metabolismo , Tiazoles/química
5.
Anim Genet ; 53(5): 599-612, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35735069

RESUMEN

With the improvement in sequencing technology and the decrease in sequencing cost, increasing amounts of genomic data for pigs have been uploaded to public databases. However, no researchers have to date integrated all currently available data to uncover the global genetic status of pigs. Meanwhile, little is known about the introgression from European to Chinese pigs and its underlying influences. Therefore, we integrated the effective genotype data of 3907 pigs from 193 populations worldwide using population genetic analysis, gene flow analysis and a sharing-IBD study. These findings illustrate not only the population structure of 59 Chinese native breeds and others but also the amounts of gene flow and introgression that have occurred between Western and Chinese pigs. In addition, we demonstrate the presence of introgressed European haplotypes in Chinese indigenous breeds and identify relevant introgressed regions that contain genes associated with growth and feed efficiency. Moreover, we compare the introgression patterns of Western and Chinese pigs and further discuss possible explanations for why the level of introgression differs between Chinese pig breeds and Western modern breeds. Collectively, this study provides a fine global population structure analysis of pigs and presents evidence of European pigs being interbred with local breeds in China.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sus scrofa , Animales , China , Variación Genética , Genética de Población , Haplotipos , Sus scrofa/genética , Porcinos/genética
6.
J Pharmacol Exp Ther ; 373(1): 149-159, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32015160

RESUMEN

Aberrant activation of the Wnt/ß-catenin pathway leads to the development of multiple cancers, including breast cancer. Development of therapeutic agents against this signaling pathway is an urgent need. In this study, we found that 2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oic acid-methyl ester (CDDO-Me) could inhibit Wnt/ß-catenin signaling mainly through targeting the low-density lipoprotein receptor-related protein (LRP) 6 and Frizzled (FZD) 7 receptor complex. This compound induced the degradation and ubiquitination of LRP6 and Fzd7 via the lysosomal pathway. We further showed that CDDO-Me mediated the degradation of FZD7 in an LRP6 ectodomain-dependent manner. In breast cancer cells, treatment with CDDO-Me increased the degradation of LRP6 and FZD7 and reduced the levels of phosphorylated Disheveled (DVL) 2 and active ß-catenin, resulting in the downregulation of Wnt target genes and several cancer stem cell (CSC) marker genes. In a murine xenograft bearing mouse mammary tumor virus (MMTV)-Wnt1-driven mammary tumor, administration of CDDO-Me significantly inhibited tumor growth and was accompanied by reduced expression of phosphorylated and total LRP6, phosphorylated and unphosphorylated DVL2, active ß-catenin, several Wnt target genes, and CSC marker genes. Collectively, the results of our study present that CDDO-Me is a potent Wnt/ß-catenin signaling inhibitor that may be a promising therapeutic agent against breast cancer. SIGNIFICANCE STATEMENT: Blocking the membrane receptor complex consisting of low-density lipoprotein receptor-related protein (LRP) 6 and Frizzled (FZD) 7 may help developing therapeutic approaches for cancers, including breast cancers. Our study indicates that 2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oic acid-methyl ester (CDDO-Me) can inhibit Wnt/ß-catenin signaling by inducing the ubiquitination and degradation of LRP6/FZD7 membrane receptor complex via a lysosomal pathway. We also found that the ectodomain of LRP6 is essential for CDDO-Me-induced FZD7 degradation. Defining CDDO-Me as a novel inhibitor of Wnt/ß-catenin signaling, our results provide insight into the mechanism of its anticancer activity.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Receptores Frizzled/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ácido Oleanólico/análogos & derivados , Animales , Neoplasias de la Mama/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Ácido Oleanólico/administración & dosificación , Distribución Aleatoria , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Emerg Microbes Infect ; 13(1): 2321981, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38422452

RESUMEN

The rapid proliferation of multidrug-resistant (MDR) bacterial pathogens poses a serious threat to healthcare worldwide. Carbapenem-resistant (CR) Enterobacteriaceae, which have near-universal resistance to available antimicrobials, represent a particularly concerning issue. Herein, we report the identification of AMXT-1501, a polyamine transport system inhibitor with antibacterial activity against Gram-positive and -negative MDR bacteria. We observed minimum inhibitory concentration (MIC)50/MIC90 values for AMXT-1501 in the range of 3.13-12.5 µM (2.24-8.93 µg /mL), including for methicillin-resistant Staphylococcus aureus (MRSA), CR Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. AMXT-1501 was more effective against MRSA and CR E. coli than vancomycin and tigecycline, respectively. Subinhibitory concentrations of AMXT-1501 reduced the biofilm formation of S. aureus and Enterococcus faecalis. Mechanistically, AMXT-1501 exposure damaged microbial membranes and increased membrane permeability and membrane potential by binding to cardiolipin (CL) and phosphatidylglycerol (PG). Importantly, AMXT-1501 pressure did not induce resistance readily in the tested pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Escherichia coli , Fosfolípidos , Bacterias Gramnegativas
8.
Poult Sci ; 102(1): 102269, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36402042

RESUMEN

Lingxian white goose (LXW) is a goose breed indigenous to China that is famous for its meat quality and fast growth. However, the genomic evidence underlying such excellent breeding characteristics remains poorly understood. Therefore, we performed whole-genome resequencing of 141 geese from 3 indigenous breeds to scan for selection signatures and detect genomic regions related to breed features of LXW. We identified 5 reproduction-related genes (SYNE1, ESR1, NRIP1, CCDC170, and ARMT1) in highly differentiated regions and 11 notable genes in 26 overlapping windows, some of which are responsible for meat quality (DHX15), growth traits (LDB2, SLIT2, and RBPJ), reproduction (KCNIP4), and unique immunity traits (DHX15 and SLIT2). These findings provide insights into the genetic characteristics of LXW and identify genes affecting important traits in LXW, which extends the genetic resources and basis for facilitating genetic improvement in domestic geese breeds.


Asunto(s)
Pollos , Gansos , Animales , Gansos/genética , Pollos/genética , Genoma , Genómica , Análisis de Secuencia de ADN/veterinaria , Selección Genética , Polimorfismo de Nucleótido Simple
9.
Front Microbiol ; 14: 1092100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065156

RESUMEN

Introduction: Ducks are important agricultural animals, which can be divided into egg and dual-purpose type ducks according to economic use. The gut microbiota of ducks plays an important role in their metabolism, immune regulation, and health maintenance. Methods: Here, we use 16S rDNA V4 hypervariable amplicon sequencing to investigate the compositions and community structures of fecal microbiota between egg (five breeds, 96 individuals) and dual-purpose type ducks (four breeds, 73 individuals) that were reared under the same conditions. Results: The alpha diversity of fecal microflora in egg type ducks was significantly higher than that in dual-type ducks. In contrast, there is no significant difference in the fecal microbial community richness between the two groups. MetaStat analysis showed that the abundance of Peptostreptococcaceae, Streptococcaceae, Lactobacillus, Romboutsia, and Campylobacter were significantly different between the two groups. The biomarkers associated with the egg and dual-purpose type ducks were identified using LEfSe analysis and IndVal index. Function prediction of the gut microbiota indicated significant differences between the two groups. The functions of environmental information processing, carbohydrate metabolism, lipid metabolism, xenobiotic biodegradation and metabolism, and metabolism of terpenoids and polyketides were more abundant in egg type ducks. Conversely, the genetic information processing, nucleotide metabolism, biosynthesis of amino acids and secondary metabolites, glycan biosynthesis and metabolism, fatty acid elongation, and insulin resistance were significantly enriched in dual-purpose type ducks. Discussion: This study explored the structure and diversity of the gut microbiota of ducks from different economic-use groups, and provides a reference for improving duck performance by using related probiotics in production.

10.
iScience ; 26(4): 106378, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37034999

RESUMEN

Infections caused by Gram-positive bacteria pose a serious threat to global public health. Drug resistance, dormant persister cells, and biofilm formation are the key challenges affecting the efficacy of antibiotics against Gram-positive bacterial infections. In this study, cinacalcet exhibited good inhibitory activity against multidrug-resistant Gram-positive bacteria, with minimum inhibitory concentrations (MICs) ranging from 3.13 µg/mL to 25 µg/mL. Cinacalcet displayed more rapid and stronger bactericidal activity against planktonic and persister cells of Staphylococcus aureus and Enterococcus faecalis compared with the antibiotics vancomycin or ampicillin, as well as potent inhibition and eradication of mature biofilms of methicillin-resistant S. aureus (MRSA) and linezolid-resistant E. faecalis (LRE). In addition, the robust antibacterial activity was demonstrated in vivo by a pneumonia infection model and a biofilm formation and deep-seated infection model. Collectively, these findings indicate that cinacalcet may be a promising new candidate antibiotic to combat infections caused by multidrug-resistant Gram-positive pathogens.

11.
Animal ; 17(5): 100797, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37121157

RESUMEN

The Zhongshan duck (ZSP) is a duck breed indigenous to China and is known for its moderate body size, strong disease resistance, tender meat, and little subcutaneous fat. However, the genomic basis of such excellent breeding characteristics remains poorly understood. Therefore, we generated whole-genomes of 58 ZSPs and 180 other indigenous Chinese ducks (60 Jinding ducks, 60 Shan Partridge ducks, and 60 Liancheng white ducks) and identified 10 560 032 single nucleotide polymorphisms and 1 334 893 structural variants. Based on genetic diversity and population structure indices, our results confirm that the ZSP is a unique germplasm resource. In addition, three reproduction-related genes (i.e., OAZ, AMH, and RLF) were located in highly differentiated regions between the ZSP and the other three duck breeds (Jinding duck; Liancheng White duck; Shan Partridge duck), suggesting that these genes may have a strong influence on egg production. Among these genes, AMH may have introgressed from an unknown species of the Anatidae family. We also identified other significant genes in the significantly differentiated window (i.e., 1% cut-off), some of which are responsible for growth and development (SEMA5B and MIB1), metabolism (EDEM3 and Xylb), skeletal system morphogenesis (bglap and MGP), and egg shape (ITPR2). These findings highlight the genetic characteristics of the ZSP that shape an array of its morphological traits. Overall, this study should facilitate a more fine-scale approach towards improving the ZSP and other indigenous ducks in China and even all over the world.


Asunto(s)
Patos , Genoma , Animales , Patos/genética , Polimorfismo de Nucleótido Simple , China , Genómica
12.
Front Microbiol ; 14: 1131178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180277

RESUMEN

Although the potent antibacterial ability of radezolid against Staphylococcus aureus has been widely reported worldwide, its antibacterial and anti-biofilm activity against the S. aureus clinical isolates from China remains elusive. In this study, the minimum inhibitory concentration (MIC) of radezolid was determined in S. aureus clinical isolates from China using the agar dilution method, and the relationship between radezolid susceptibility and ST distribution was also investigated. The anti-biofilm activity of radezolid against S. aureus was determined by a crystal violet assay and compared with that of linezolid and contezolid. The quantitative proteomics of S. aureus treated with radezolid was analyzed, and the genetic mutations in radezolid-induced resistant S. aureus were determined by whole-genome sequencing. The dynamic changes in transcriptional expression levels of several biofilm-related genes were analyzed by quantitative RT-PCR. Our data showed that radezolid MIC ranged from ≤0.125 to 0.5 mg/L, which was almost 1/4 × MIC of linezolid against S. aureus, indicating the greater antibacterial activity of radezolid than linezolid. The S. aureus clinical isolates with radezolid MICs of 0.5 mg/L were most widely distributed in ST239 of MRSA and ST7 of MSSA. Moreover, the more robust anti-biofilm activity of radezolid with subinhibitory concentrations (1/8 × MIC and 1/16 × MIC) was demonstrated against S. aureus when compared with that of contezolid and linezolid. Genetic mutations were found in glmS, 23S rRNA, and DUF1542 domain-containing protein in radezolid-induced resistant S. aureus selected by in vitro induction of drug exposure. Quantitative proteomic analysis of S. aureus indicated that the global expression of some biofilm-related and virulence-related proteins was downregulated. Quantitative RT-PCR further confirmed that the expressions of some downregulated biofilm-related proteins, including sdrD, carA, sraP, hlgC, sasG, spa, sspP, fnbA, and oatA, were decreased after 12 h and 24 h of exposure to radezolid. Conclusively, radezolid shows robust antibacterial and anti-biofilm activity against S. aureus clinical isolates from China when compared with contezolid and linezolid.

13.
J Antibiot (Tokyo) ; 76(7): 406-415, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37185582

RESUMEN

This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 µM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Bitionol , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana , Biopelículas
14.
ACS Infect Dis ; 9(12): 2523-2537, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38014911

RESUMEN

The increasing emergence and dissemination of multidrug-resistant (MDR) Gram-positive pathogens pose a serious threat to global public health. Previous reports have demonstrated that the compound H5-23, which has a thiazolopyrimidinone core structure, exhibited antibacterial activity against Staphylococcus epidermidis in vitro. However, the antibacterial activity in vivo and mechanism of action of H5-23 against MDR bacteria have not been fully studied. In this study, we report that H5-23 has wide-spectrum antibacterial activity against Gram-positive bacteria. When combined with daptomycin (DAP), H5-23 demonstrates enhanced antimicrobial activity, effectively killing both planktonic and persister cells, as well as eradicating biofilm formation by linezolid-resistant Enterococcus faecalis. The development of resistance shows that H5-23 has a low propensity to induce antibiotic resistance compared to that of linezolid in vitro. Mechanistic studies reveal that H5-23 increases membrane permeability and disrupts membrane integrity, resulting in increased production of reactive oxygen species (ROS), metabolic perturbations, and ultimately cell death. Additionally, we demonstrate the synergistic antibacterial effect of H5-23 combined with DAP in a murine model. These findings suggest that H5-23 is a promising antimicrobial agent and provides a potential strategy for enhancing the efficacy of DAP in combating multidrug-resistant E. faecalis.


Asunto(s)
Daptomicina , Animales , Ratones , Daptomicina/farmacología , Linezolid/farmacología , Enterococcus faecalis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Enterococcus , Membrana Celular
15.
ACS Omega ; 8(10): 9652-9661, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936302

RESUMEN

Biofilm or persister cells formed by Staphylococcus aureus are closely related to pathogenicity. However, no antimicrobials exist to inhibit biofilm formation or persister cells induced by S. aureus in clinical practice. This study found that pinaverium bromide had antibacterial activity against S. aureus, with the MIC50/MIC90 at 12.5/25 µM, respectively. Pinaverium bromide (at 4 × MIC) showed a rapid bactericidal effect on S. aureus planktonic cells, and it was more effective (at least 1-log10 cfu/mL) than linezolid, vancomycin, and ampicillin at 4 h of the time-killing test. Pinaverium bromide (at 10 × MIC) significantly inhibited the formation of S. aureus persister cells (at least 3-log10 cfu/mL) than linezolid, vancomycin, and ampicillin at 24, 48, 72, 96, and 120 h of the time-killing test. Biofilm formation and adherent cells of S. aureus isolates were significantly inhibited by pinaverium bromide (at 1/2 or 1/4 × MICs). The fluorescence intensity of the membrane polarity of S. aureus increased with the treatment of pinaverium bromide (≥1 × MIC), and the MICs of pinaverium bromide increased by 4 times with the addition of cell membrane phospholipids, phosphatidyl glycerol and cardiolipin. The cell viabilities of human hepatocellular carcinoma cells HepG2 and Huh7, mouse monocyte-macrophage cells J774, and human hepatic stellate cells LX-2 were slightly inhibited by pinaverium bromide (<50 µM). There were 54 different abundance proteins detected in the pinaverium bromide-treated S. aureus isolate by proteomics analysis, of which 33 proteins increased, whereas 21 proteins decreased. The abundance of superoxide dismutase sodM and ica locus proteins icaA and icaB decreased. While the abundance of global transcriptional regulator spxA and Gamma-hemolysin component B increased. In conclusion, pinaverium bromide had an antibacterial effect on S. aureus and significantly inhibited the formation of biofilm and persister cells of S. aureus.

16.
Front Microbiol ; 13: 1106319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699581

RESUMEN

Over the last few decades, Staphylococcus aureus infection remain a major medical challenge and health concern worldwide. Biofilm formation and antibiotic resistance caused by S. aureus make it difficult to be eradicated from bacterial infections in clinics. In this study, our data demonstrated the antibacterial and excellent anti-biofilm activity of entrectinib against S. aureus. Entrectinib also exhibited the good safety, suggesting no toxicity with antibacterial concentration of entrectinib toward the erythrocytes and mammalian 239 T cells. Moreover, entrectinib significantly reduced the bacterial burden of septic tissue in a murine model of MRSA infection. Global proteomic analysis of S. aureus treated with entrectinib showed significant changes in the expression levels of ribosomal structure-related (rpmC, rpmD, rplX, and rpsT) and oxidative stress-related proteins (Thioredoxin system), suggesting the possible inhibition of bacterial protein biosynthesis with entrectinib exposure. The increased production of reactive oxygen species (ROS) was demonstrated in the entrectinib-treated S. aureus, supported the impact of entrectinib on the expression changes of ROS-correlated proteins involved in oxidative stress. Furthermore, entrectinib-induced resistant S. aureus clone was selected by in vitro induction under entrectinib exposure and 3 amino acid mutations in the entrectinib-induced resistant S. aureus strain, 2 of which were located in the gene encoding Type II NADH: quinoneoxidoreductase and one were found in GTP pyrophosphokinase family protein. Finally, the bactericidal action of entrectinib on S. aureus were confirmed by disrupting the bacterial cell membrane. Conclusively, entrectinib exhibit the antibacterial and anti-biofilm activity by destroying cell membrane against S. aureus.

17.
Front Vet Sci ; 9: 847481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372529

RESUMEN

The domestic goose is an important economic animal in agriculture and its beak, a trait with high heritability, plays an important role in promoting food intake and defending against attacks. In this study, we sequenced 772 420-day-old Xingguo gray geese (XGG) using a low-depth (~1 ×) whole-genome resequencing strategy. We detected 12,490,912 single nucleotide polymorphisms (SNPs) using the standard GATK and imputed with STITCH. We then performed a genome-wide association study on the beak length trait in XGG. The results indicated that 57 SNPs reached genome-wide significance levels for the beak length trait and were assigned to seven genes, including TAPT1, DHX15, CCDC149, LGI2, SEPSECS, ANAPC4, and Slc34a2. The different genotypes of the most significant SNP (top SNP), which was located upstream of LGI2 and explained 7.24% of the phenotypic variation in beak length, showed significant differences in beak length. Priority-based significance analysis concluded that CCDC149, LGI2, and SEPSECS genes in the most significant quantitative trait locus interval were the most plausible positional and functional candidate genes for beak length development in the XGG population. These findings not only enhance our understanding of the genetic mechanism of the beak length phenotype in geese, but also lay the foundation for further studies to facilitate the genetic selection of traits in geese.

18.
Front Microbiol ; 13: 970901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338074

RESUMEN

This study aims to evaluate the in vitro antibacterial and anti-biofilm activities of licochalcone A on Enterococcus faecalis and to investigate the possible target genes of licochalcone A in E. faecalis. This study found that licochalcone A had antibacterial activities against E. faecalis, with the MIC50 and MIC90 were 25 µM. Licochalcone A (at 4 × MIC) indicated a rapid bactericidal effect on E. faecalis planktonic cells, and killed more E. faecalis planktonic cells (at least 3-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 2, 4, and 6 h of the time-killing test. Licochalcone A (at 10 × MIC) significantly reduced the production of E. faecalis persister cells (at least 2-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 24, 48, 72, and 96 h of the time-killing test. Licochalcone A (at 1/4 × MIC) significantly inhibited the biofilm formation of E. faecalis. The RNA levels of biofilm formation-related genes, agg, esp, and srtA, markedly decreased when the E. faecalis isolates were treated with licochalcone A at 1/4 × MIC for 6 h. To explore the possible target genes of licochalcone A in E. faecalis, the licochalcone A non-sensitive E. faecalis clones were selected in vitro by induction of wildtype strains for about 140 days under the pressure of licochalcone A, and mutations in the possible target genes were detected by whole-genome sequencing. This study found that there were 11 nucleotide mutations leading to nonsynonymous mutations of 8 amino acids, and among these amino acid mutations, there were 3 mutations located in transcriptional regulator genes (MarR family transcriptional regulator, TetR family transcriptional regulator, and MerR family transcriptional regulator). In conclusion, this study found that licochalcone A had an antibacterial effect on E. faecalis, and significantly inhibited the biofilm formation of E. faecalis at subinhibitory concentrations.

19.
Gigascience ; 112022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35383847

RESUMEN

BACKGROUND: The dazzling phenotypic characteristics of male Indian peafowl (Pavo cristatus) are attractive both to the female of the species and to humans. However, little is known about the evolution of the phenotype and phylogeny of these birds at the whole-genome level. So far, there are no reports regarding the genetic mechanism of the formation of leucism plumage in this variant of Indian peafowl. RESULTS: A draft genome of Indian peafowl was assembled, with a genome size of 1.05 Gb (the sequencing depth is 362×), and contig and scaffold N50 were up to 6.2 and 11.4 Mb, respectively. Compared with other birds, Indian peafowl showed changes in terms of metabolism, immunity, and skeletal and feather development, which provided a novel insight into the phenotypic evolution of peafowl, such as the large body size and feather morphologies. Moreover, we determined that the phylogeny of Indian peafowl was more closely linked to turkey than chicken. Specifically, we first identified that PMEL was a potential causal gene leading to the formation of the leucism plumage variant in Indian peafowl. CONCLUSIONS: This study provides an Indian peafowl genome of high quality, as well as a novel understanding of phenotypic evolution and phylogeny of Indian peafowl. These results provide a valuable reference for the study of avian genome evolution. Furthermore, the discovery of the genetic mechanism for the development of leucism plumage is both a breakthrough in the exploration of peafowl plumage and also offers clues and directions for further investigations of the avian plumage coloration and artificial breeding in peafowl.


Asunto(s)
Plumas , Genómica , Animales , Femenino , Tamaño del Genoma , Genómica/métodos , Masculino , Filogenia , Codorniz
20.
iScience ; 25(2): 103731, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35098100

RESUMEN

There are no anti-virulence and anti-biofilm treatments for Staphylococcus aureus infection. We found that 25 µM loratadine inhibits S. aureus biofilm formation under static or flow-based conditions. Testing of loratadine effects on 255 clinical S. aureus strains with varying biofilm robustness showed inhibition of biofilm formation in medium and strong, but not weak, biofilm-producing strains. At 25 µM, loratadine reduced pigmentation and hemolysis of the bacteria without affecting growth. Loratadine (5 mg/kg) reduced mortality in S. aureus pulmonary infection model mice and acted synergistically with vancomycin to reduce pulmonary bacterial load and levels of inflammatory cytokines in bronchoalveolar lavage fluid. Loratadine analogues (side-chain carbamate moiety changed) inhibited biofilm formation, pigmentation, and hemolysis of S. aureus. Regarding mechanism, loratadine exposure reduced RNA levels of virulence-related S. aureus genes, and loratadine-induced mutations in MgrA reduced loratadine-MgrA binding. Overexpression of mutated mgrA in wild-type S. aureus decreased the biofilm formation inhibition effect of loratadine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA