RESUMEN
Senescence is closely related to the occurrence of retinal degeneration. Recent studies have shown that bone marrow mesenchymal stem cells (BMMSCs) have significant therapeutic effects on retinal degeneration, While BMMSCs suffer from functional decline in bone aging. Whether senescence affects BMMSCs therapy on retinal degeneration remains unknown. Here, we applied the previously established bone progeria animal model, the senescence-accelerated mice-prone 6 (SAMP6) strain, and surprisingly discovered that SAMP6 mice demonstrated retinal degeneration at 6 months old. Furthermore, BMMSCs derived from SAMP6 mice failed to prevent MNU-induced retinal degeneration in vivo. As expected, BMMSCs from SAMP6 mice exhibited impairment in the differentiation capacities, compared to those from the age-matched senescence-accelerated mice-resistant 1 (SAMR1) strain. Moreover, BMMSCs from SAMR1 mice counteracted MNU-induced retinal degeneration, with increased expression of the retina survival hallmark, N-myc downstream regulated gene 2 (NDRG2). Taken together, these findings reveal that bone progeria diminished the therapeutic effects of BMMSC on retinal degeneration.
Asunto(s)
Huesos/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Progeria/patología , Degeneración Retiniana/terapia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular , Ratones , Retina/patología , Degeneración Retiniana/patologíaRESUMEN
Photoreceptor apoptosis is the main pathological feature of retinal degenerative diseases; however, the underlying molecular mechanism has not been elucidated. Recent studies have shown that N-myc downstream regulated gene 2 (NDRG2) exerts a neuroprotective effect on the brain and spinal cord. In addition, our previous studies have confirmed that NDRG2 is expressed in mouse retinal photoreceptors and counteracts N-methyl-N-nitrosourea (MNU)-induced apoptosis. However, the underlying molecular mechanism remains unclear. In this study, we observed that the expression of NDRG2 was not only significantly inhibited in photoreceptors after MNU treatment but also after hydrogen peroxide treatment, and photoreceptor apoptosis was alleviated or aggravated after overexpression or knockdown of NDRG2 in the 661W photoreceptor cell line, respectively. The apoptosis inhibitor Z-VAD-FMK rescued photoreceptor apoptosis induced by MNU after NDRG2 knockdown. Next, we screened and identified tissue inhibitor of metalloproteinases 3 (TIMP3) as the downstream molecule of NDRG2 in 661W cells by using quantitative real-time polymerase chain reaction. TIMP3 exerts a neuroprotective effect by inhibiting the expression of matrix metalloproteinases (MMPs). Subsequently, we found that signal transducer and activator of transcription 3 (STAT3) mediated the NDRG2-associated regulation of TIMP3. Finally, we overexpressed NDRG2 in mouse retinal tissues by intravitreally injecting an adeno-associated virus with mouse NDRG2 in vivo. Results showed that NDRG2 upregulated the expression of phospho-STAT3 (p-STAT3) and TIMP3, while suppressing MNU-induced photoreceptor apoptosis and MMP expression. Our findings revealed how NDRG2 regulates the STAT3/TIMP3/MMP pathway and uncovered the molecular mechanism underlying its neuroprotective effect on mouse retinal photoreceptors.
Asunto(s)
Fármacos Neuroprotectores , Degeneración Retiniana , Animales , Ratones , Apoptosis , Fármacos Neuroprotectores/farmacología , Células Fotorreceptoras , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/genética , Factor de Transcripción STAT3/genéticaRESUMEN
Retinitis pigmentosa (RP) is a heterogeneous group of retinal degenerative diseases in which the final pathological feature is photoreceptor cell apoptosis. Currently, the pathogenesis of RP remains poorly understood and therapeutics are ineffective. 17ß-Oestradiol (ßE2) is universally acknowledged as a neuroprotective factor in neurodegenerative diseases and has manifested neuroprotective effects in a light-induced retinal degeneration model. Recently, we identified N-myc downstream regulated gene 2 (NDRG2) suppression as a molecular marker of mouse retinal photoreceptor-specific cell death. ßE2 has also been reported to regulate NDRG2 in salivary acinar cells. Therefore, in this study, we investigated whether ßE2 plays a protective role in RP and regulates NDRG2 in photoreceptor cells. To this end, we generated RP models and observed that ßE2 not only reduced the apoptosis of photoreceptor cells, but also restored the level of NDRG2 expression in RP models. Then, we showed that siNDRG2 inhibits the anti-apoptotic effect of ßE2 on photoreceptor cells in a cellular RP model. Subsequently, we used a classic oestrogen receptor (ER) antagonist to attenuate the effects of ßE2, suggesting that ßE2 exerted its effects on RP models via the classic ERs. In addition, we performed a bioinformatics analysis, and the results indicated that the reported oestrogen response element (ERE) sequence is present in the promoter region of the mouse NDRG2 gene. Overall, our results suggest that ßE2 attenuated the apoptosis of photoreceptor cells in RP models by maintaining NDRG2 expression via a classic ER-mediated mechanism.
Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Apoptosis , Modelos Animales de Enfermedad , Estradiol/farmacología , Ratones , Células Fotorreceptoras , Células Fotorreceptoras de Vertebrados , Retinitis Pigmentosa/tratamiento farmacológicoRESUMEN
Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1-2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.