Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Eng Sci ; 38(7): 676-684, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34321862

RESUMEN

Oxygation (O) is a water-saving and energy-saving irrigation method that can also influence the absorption of cadmium (Cd) by rice, but the related mechanism is still unclear. In this study, the relationship between O method and Fe-Mn plaque formation was tested through pot experiments. The Fe-Mn plaque content and Cd concentration were measured during different rice growth periods, and the fitted models based on their correlation were established. The results show that, Fe-Mn plaque formation was the most significant factor affecting Cd accumulation in rice under O conditions. The content of rice root Fe-Mn plaque was higher after the application of O during the filling and maturity stages of rice growth, and Fe-Mn plaque inhibited Cd accumulation in the rice roots and grains and reduced the translocation factors (TFs) from the rice dithionite-citrate-bicarbonate extract (DCB) to the roots (TFDCB-R) and from the roots to the straw (TFStraw-G). O may influence the Fe-Mn plaque formation on the root surface to impede Cd absorption by rice. This research provides theoretical support for the Cd absorption under O conditions.

2.
Bioresour Technol ; 330: 124947, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33735728

RESUMEN

Aging is inevitable when biochar uses for remediate Cadmium (Cd) pollution, but the variation of adsorption mechanism remains unclear. This study uses ramie residue to prepare fresh biochar, and adopt it with acidification and oxidation to simulate the aging process. The difference of physicochemical properties between fresh and aged biochar are studied through microstructure. Then, two kinds of biochar are making adsorption experiments in Cd solution for analyzing their adsorption mechanism. The results show that, both chemisorption and physisorption are exist, chemisorption and physisorption is the predominant way of fresh biochar and aged biochar respectively. Cation exchange is important but weaker in aged biochar than fresh biochar. Carboxyl plays a leading role in complexation of fresh biochar and hydroxy in aged biochar. Coprecipitation and cation-π mechanism impair apparently in aged biochar. This study indicates that aging change ramie biochar's main adsorption mechanism and the primary chemisorption way.


Asunto(s)
Boehmeria , Cadmio , Adsorción , Carbón Orgánico
3.
Nanoscale Adv ; 1(9): 3607-3613, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36133535

RESUMEN

An amperometric immunosensor based on new thiolated bionanocomposite with a high dispersion of gold nanoparticles (AuNPs) for the sensitive detection of indole-3-acetic acid (IAA) is being reported herein. Briefly, a thiolated nanocomposite was prepared via the microwave-assisted thiol-ene reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) with oxidized polyaniline (PANI), which was synthesized in the presence of multiwalled carbon nanotubes (MWCNTs), yielding thiolated polyaniline (TPANI)-MWCNTs. Further, AuNPs were deposited on the TPANI-MWCNTs by microwave-assisted method to obtain a AuNPs/TPANI-MWCNTs nanocomposite. Finally, the thiolated bionanocomposite film was constructed via the specific chemical reaction between boronic acid functionalized AuNPs and the vicinal diol functionalized AuNP labeled immunoglobulin G (IgG-AuNPs). The change in the reduction peak current of Fe(CN)6 3- was used to monitor the immunoreaction between IAA and antibody. The TPANI-MWCNT nanocomposites uniformly disperse AuNPs, IgG-AuNPs and anti-IAA-AuNPs, leading to the amplification of the signal of the immunosensor. Fourier transform infrared spectra (FTIR), cyclic voltammetry (CV), transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-vis) and differential pulse voltammetry (DPV) were used to characterize the nanocomposite film and the stepwise modification of the immunosensor. The prepared thiolated bionanocomposite material has good biocompatibility, a highly uniform dispersion of the AuNPs with a narrow size distribution as verified by TEM, and high load/activity of the immobilized antibody proved via DPV. The fabricated IAA amperometric immunosensor not only exhibits a good linear arrange from 1.0 pg mL-1 to 10 ng mL-1 with the limit of detection of 0.97 pg mL-1 (S/N = 3), but also possesses good selectivity, reproducibility and stability for the detection of IAA.

4.
RSC Adv ; 8(59): 33742-33747, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-35548788

RESUMEN

Pt nanoparticles (PtNPs) well-dispersed on thiolated polyaniline (TPANI)-multiwalled carbon nanotubes (MWCNTs) were prepared for enhanced electrocatalytic oxidation of methanol in acidic media. Briefly, the preparation of nanocomposites was carried out via microwave-assisted thiol-ene reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) with oxidized PANI, which was synthesized in the presence of MWCNTs, yielding TPANI-MWCNTs; then, PtNPs were deposited on TPANI-MWCNTs by a microwave-assisted method to obtain PtNPs/TPANI-MWCNT nanohybrids. Fourier transform infrared spectroscopy, cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma-atom emission spectroscopy were used to study relevant nanohybrid properties. TEM showed that PtNPs were well dispersed on TPANI-MWCNTs. TGA showed that PtNPs/TPANI-MWCNTs exhibited better thermal stability than PtNPs/TPANI-MWCNTs and PtNPs/MWCNTs. CV studies showed that PtNPs/TPANI-MWCNT-modified glassy carbon electrode (GCE) exhibited a larger electrochemically active surface area and higher electrocatalytic performance toward methanol electro-oxidation compared with those of PtNPs/PANI-MWCNTs/GCE and PtNPs/MWCNTs/GCE. Also, the PtNPs/TPANI-MWCNTs/GCE electrode possessed high stability and maintained 86% of its initial catalytic activity after 1000-cycle CV in 1.0 M CH3OH + 0.5 M H2SO4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA