Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 88(3): 1885-91, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26729044

RESUMEN

Recent progress in top-down proteomics has led to a demand for mass spectrometry (MS)-compatible chromatography techniques to separate intact proteins using volatile mobile phases. Conventional hydrophobic interaction chromatography (HIC) provides high-resolution separation of proteins under nondenaturing conditions but requires high concentrations of nonvolatile salts. Herein, we introduce a series of more-hydrophobic HIC materials that can retain proteins using MS-compatible concentrations of ammonium acetate. The new HIC materials appear to function as a hybrid form of conventional HIC and reverse phase chromatography. The function of the salt seems to be preserving protein structure rather than promoting retention. Online HIC-MS is feasible for both qualitative and quantitative analysis. This is demonstrated with standard proteins and a complex cell lysate. The mass spectra of proteins from the online HIC-MS exhibit low charge-state distributions, consistent with those commonly observed in native MS. Furthermore, HIC-MS can chromatographically separate proteoforms differing by minor modifications. Hence, this new HIC-MS combination is promising for top-down proteomics.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Internet , Espectrometría de Masas , Proteómica/métodos , Animales , Aprotinina/análisis , Bovinos , Pollos , Cromatografía , Quimotripsinógeno/análisis , Caballos , Lactoglobulinas/análisis , Muramidasa/análisis , Muramidasa/metabolismo , Ribonucleasa Pancreática/análisis , Ribonucleasa Pancreática/metabolismo , Tripsinógeno/análisis
2.
Nano Lett ; 15(2): 1421-7, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25633476

RESUMEN

We report the controlled synthesis of NiCo layered double hydroxide (LDH) nanoplates using a newly developed high temperature high pressure hydrothermal continuous flow reactor (HCFR), which enables direct growth onto conductive substrates in high yield and, most importantly, better control of the precursor supersaturation and, thus, nanostructure morphology and size. The solution coordination chemistry of metal-ammonia complexes was utilized to synthesize well-defined NiCo LDH nanoplates directly in a single step without topochemical oxidation. The as-grown NiCo LDH nanoplates exhibit a high catalytic activity toward the oxygen evolution reaction (OER). By chemically exfoliating LDH nanoplates to thinner nanosheets, the catalytic activity can be further enhanced to yield an electrocatalytic current density of 10 mA cm(-2) at an overpotential of 367 mV and a Tafel slope of 40 mV dec(-1). Such enhancement could be due to the increased surface area and more exposed active sites. X-ray photoelectron spectroscopy (XPS) suggests the exfoliation also caused some changes in electronic structure. This work presents general strategies to controllably grow nanostructures of LDH and ternary oxide/hydroxides in general and to enhance the electrocatalytic performance of layered nanostructures by exfoliation.

3.
Anal Chem ; 87(10): 5363-5371, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25867201

RESUMEN

To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Cromatografía de Fase Inversa/métodos , Proteoma/aislamiento & purificación , Proteómica , Secuencia de Aminoácidos , Animales , Bovinos , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Proteoma/análisis , Espectrometría de Masas en Tándem
4.
Anal Chem ; 86(15): 7899-906, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24968279

RESUMEN

One of the challenges in proteomics is the proteome's complexity, which necessitates the fractionation of proteins prior to the mass spectrometry (MS) analysis. Despite recent advances in top-down proteomics, separation of intact proteins remains challenging. Hydrophobic interaction chromatography (HIC) appears to be a promising method that provides high-resolution separation of intact proteins, but unfortunately the salts conventionally used for HIC are incompatible with MS. In this study, we have identified ammonium tartrate as a MS-compatible salt for HIC with comparable separation performance as the conventionally used ammonium sulfate. Furthermore, we found that the selectivity obtained with ammonium tartrate in the HIC mobile phases is orthogonal to that of reverse phase chromatography (RPC). By coupling HIC and RPC as a novel two-dimensional chromatographic method, we have achieved effective high-resolution intact protein separation as demonstrated with standard protein mixtures and a complex cell lysate. Subsequently, the separated intact proteins were identified by high-resolution top-down MS. For the first time, these results have shown the high potential of HIC as a high-resolution protein separation method for top-down proteomics.


Asunto(s)
Cromatografía de Fase Inversa/métodos , Proteínas/aislamiento & purificación , Proteómica , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas/química
5.
Chem Sci ; 8(6): 4306-4311, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28660060

RESUMEN

Phosphorylation plays pivotal roles in cellular processes and dysregulated phosphorylation is considered as an underlying mechanism in many human diseases. Top-down mass spectrometry (MS) analyzes intact proteins and provides a comprehensive analysis of protein phosphorylation. However, top-down MS-based phosphoproteomics is challenging due to the difficulty in enriching low abundance intact phosphoproteins as well as separating and detecting the enriched phosphoproteins from complex mixtures. Herein, we have designed and synthesized the next generation functionalized superparamagnetic cobalt ferrite (CoFe2O4) nanoparticles (NPs), and have further developed a top-down phosphoproteomics strategy coupling phosphoprotein enrichment enabled by the functionalized CoFe2O4 NPs with online liquid chromatography (LC)/MS/MS for comprehensive characterization of phosphoproteins. We have demonstrated the highly specific enrichment of a minimal amount of spike-in ß-casein from a complex tissue lysate as well as effective separation and quantification of its phosphorylated genetic variants. More importantly, this integrated top-down phosphoproteomics strategy allows for enrichment, identification, quantification, and comprehensive characterization of low abundance endogenous phosphoproteins from complex tissue extracts on a chromatographic time scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA