Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 169(6): 1051-1065.e18, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575669

RESUMEN

During eukaryotic evolution, ribosomes have considerably increased in size, forming a surface-exposed ribosomal RNA (rRNA) shell of unknown function, which may create an interface for yet uncharacterized interacting proteins. To investigate such protein interactions, we establish a ribosome affinity purification method that unexpectedly identifies hundreds of ribosome-associated proteins (RAPs) from categories including metabolism and cell cycle, as well as RNA- and protein-modifying enzymes that functionally diversify mammalian ribosomes. By further characterizing RAPs, we discover the presence of ufmylation, a metazoan-specific post-translational modification (PTM), on ribosomes and define its direct substrates. Moreover, we show that the metabolic enzyme, pyruvate kinase muscle (PKM), interacts with sub-pools of endoplasmic reticulum (ER)-associated ribosomes, exerting a non-canonical function as an RNA-binding protein in the translation of ER-destined mRNAs. Therefore, RAPs interconnect one of life's most ancient molecular machines with diverse cellular processes, providing an additional layer of regulatory potential to protein expression.


Asunto(s)
Ribosomas/química , Ribosomas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Madre Embrionarias/metabolismo , Retículo Endoplásmico/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Biosíntesis de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Hormonas Tiroideas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Hormona Tiroide
2.
Development ; 146(12)2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31142541

RESUMEN

The heart is a complex organ composed of multiple cell and tissue types. Cardiac cells from different regions of the growing embryonic heart exhibit distinct patterns of gene expression, which are thought to contribute to heart development and morphogenesis. Single cell RNA sequencing allows genome-wide analysis of gene expression at the single cell level. Here, we have analyzed cardiac cells derived from early stage developing hearts by single cell RNA-seq and identified cell cycle gene expression as a major determinant of transcriptional variation. Within cell cycle stage-matched CMs from a given heart chamber, we found that CMs in the G2/M phase downregulated sarcomeric and cytoskeletal markers. We also identified cell location-specific signaling molecules that may influence the proliferation of other nearby cell types. Our data highlight how variations in cell cycle activity selectively promote cardiac chamber growth during development, reveal profound chamber-specific cell cycle-linked transcriptional shifts, and open the way to deeper understanding of pathogenesis of congenital heart disease.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Análisis de la Célula Individual/métodos , Transcripción Genética , Animales , Ciclo Celular , Análisis por Conglomerados , Biología Computacional , Citoesqueleto/metabolismo , Genómica , Ratones , Morfogénesis , Miocardio/metabolismo , Miocitos Cardíacos/citología , ARN/metabolismo , Sarcómeros/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal
4.
Circ Res ; 116(2): 341-53, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25593278

RESUMEN

The heart is the first organ to form during embryonic development. Given the complex nature of cardiac differentiation and morphogenesis, it is not surprising that some form of congenital heart disease is present in ≈1 percent of newborns. The molecular determinants of heart development have received much attention over the past several decades. This has been driven in large part by an interest in understanding the causes of congenital heart disease coupled with the potential of using knowledge from developmental biology to generate functional cells and tissues that could be used for regenerative medicine purposes. In this review, we highlight the critical signaling pathways and transcription factor networks that regulate cardiomyocyte lineage specification in both in vivo and in vitro models. Special focus will be given to epigenetic regulators that drive the commitment of cardiomyogenic cells from nascent mesoderm and their differentiation into chamber-specific myocytes, as well as regulation of myocardial trabeculation.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Miocardio/citología , Miocitos Cardíacos/fisiología , Animales , Linaje de la Célula/fisiología , Humanos , Mesodermo/citología , Mesodermo/fisiología , Transducción de Señal/fisiología
5.
Circulation ; 132(2): 109-21, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25995316

RESUMEN

BACKGROUND: Heart development is tightly regulated by signaling events acting on a defined number of progenitor and differentiated cardiac cells. Although loss of function of these signaling pathways leads to congenital malformation, the consequences of cardiac progenitor cell or embryonic cardiomyocyte loss are less clear. In this study, we tested the hypothesis that embryonic mouse hearts exhibit a robust mechanism for regeneration after extensive cell loss. METHODS AND RESULTS: By combining a conditional cell ablation approach with a novel blastocyst complementation strategy, we generated murine embryos that exhibit a full spectrum of cardiac progenitor cell or cardiomyocyte ablation. Remarkably, ablation of up to 60% of cardiac progenitor cells at embryonic day 7.5 was well tolerated and permitted embryo survival. Ablation of embryonic cardiomyocytes to a similar degree (50% to 60%) at embryonic day 9.0 could be fully rescued by residual myocytes with no obvious adult cardiac functional deficit. In both ablation models, an increase in cardiomyocyte proliferation rate was detected and accounted for at least some of the rapid recovery of myocardial cellularity and heart size. CONCLUSION: Our study defines the threshold for cell loss in the embryonic mammalian heart and reveals a robust cardiomyocyte compensatory response that sustains normal fetal development.


Asunto(s)
Proliferación Celular/fisiología , Células Madre Embrionarias/fisiología , Corazón Fetal/citología , Miocitos Cardíacos/fisiología , Animales , Recuento de Células/métodos , Corazón Fetal/crecimiento & desarrollo , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos
6.
Mol Pharm ; 12(3): 742-50, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25588140

RESUMEN

A highly versatile and step-economical route to a new class of guanidinium-rich molecular transporters and evaluation of their ability to complex, deliver, and release siRNA are described. These new drug/probe delivery systems are prepared in only two steps, irrespective of length or composition, using an organocatalytic ring-opening co-oligomerization of glycerol-derived cyclic carbonate monomers incorporating either protected guanidine or lipid side chains. The resultant amphipathic co-oligomers are highly effective vehicles for siRNA delivery, providing an excellent level of target protein suppression (>85%). These new oligocarbonates are nontoxic at levels required for cell penetration and can be tuned for particle size. Relative to the previously reported methyl(trimethylene)carbonate (MTC) scaffold, the ether linkage at C2 in the new transporters markedly enhances the stability of the siRNA/co-oligomer complexes. Both hybrid co-oligomers, containing a mixture of glycerol- and MTC-derived monomers, and co-oligomers containing only glycerol monomers are found to provide tunable control over siRNA complex stability. On the basis of a glycerol and CO2 backbone, these new co-oligomers represent a rapidly tunable and biocompatible siRNA delivery system that is highly effective in suppressing target protein synthesis.


Asunto(s)
Sistemas de Liberación de Medicamentos , ARN Interferente Pequeño/administración & dosificación , Biofarmacia , Carbonatos/química , Línea Celular , Permeabilidad de la Membrana Celular , Glicerol/análogos & derivados , Glicerol/química , Guanidina/análogos & derivados , Guanidina/química , Humanos , Interferencia de ARN , Tratamiento con ARN de Interferencia/métodos
7.
Elife ; 122023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37306301

RESUMEN

The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Animales , Ratones , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Vertebrados/genética , Genoma , Mamíferos/genética
8.
Nat Commun ; 13(1): 5491, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123354

RESUMEN

Recent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification. We observe upregulation of RPL10A/uL1-containing ribosomes in the primitive streak followed by progressive decreases during mesoderm differentiation. An Rpl10a loss-of-function allele in mice causes striking early mesodermal phenotypes, including posterior trunk truncations, and inhibits paraxial mesoderm production in culture. Ribosome profiling in Rpl10a loss-of-function mice reveals decreased translation of mesoderm regulators, including Wnt pathway mRNAs, which are also enriched on RPL10A/uL1-containing ribosomes. We further show that RPL10A/uL1 regulates canonical and non-canonical Wnt signaling during stem cell differentiation and in the developing embryo. These findings reveal unexpected ribosome composition modularity that controls differentiation and development through the specialized translation of key signaling networks.


Asunto(s)
Mesodermo , Proteínas Ribosómicas/metabolismo , Células Madre , Animales , Diferenciación Celular/genética , Humanos , Mesodermo/metabolismo , Ratones , Ribosomas , Células Madre/metabolismo , Vía de Señalización Wnt
9.
Nat Commun ; 13(1): 1536, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318324

RESUMEN

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.


Asunto(s)
COVID-19 , ARN , COVID-19/terapia , Humanos , Seudouridina/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo
10.
bioRxiv ; 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33821271

RESUMEN

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop a new RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that "superfolder" mRNAs can be designed to improve both stability and expression that are further enhanced through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.

11.
Dev Cell ; 39(4): 491-507, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27840109

RESUMEN

Embryonic gene expression intricately reflects anatomical context, developmental stage, and cell type. To address whether the precise spatial origins of cardiac cells can be deduced solely from their transcriptional profiles, we established a genome-wide expression database from 118, 949, and 1,166 single murine heart cells at embryonic day 8.5 (e8.5), e9.5, and e10.5, respectively. We segregated these cells by type using unsupervised bioinformatics analysis and identified chamber-specific genes. Using a random forest algorithm, we reconstructed the spatial origin of single e9.5 and e10.5 cardiomyocytes with 92.0% ± 3.2% and 91.2% ± 2.8% accuracy, respectively (99.4% ± 1.0% and 99.1% ± 1.1% if a ±1 zone margin is permitted) and predicted the second heart field distribution of Isl-1-lineage descendants. When applied to Nkx2-5-/- cardiomyocytes from murine e9.5 hearts, we showed their transcriptional alteration and lack of ventricular phenotype. Our database and zone classification algorithm will enable the discovery of novel mechanisms in early cardiac development and disease.


Asunto(s)
Perfilación de la Expresión Génica , Corazón/embriología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Algoritmos , Animales , Biomarcadores/metabolismo , Linaje de la Célula/genética , Separación Celular , Embrión de Mamíferos/citología , Cuerpos Embrioides/citología , Regulación del Desarrollo de la Expresión Génica , Integrasas/metabolismo , Ratones , Modelos Biológicos , Miocardio/metabolismo , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA