Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pain ; : 17448069241260349, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795338

RESUMEN

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disease characterized by chronic visceral pain with a complex etiology and challenging treatment. Although accumulating evidence supports the involvement of central nervous system sensitization in the development of visceral pain, the precise molecular mechanisms remain incompletely understood. In this study, we highlight the critical regulatory role of lysine-specific demethylase 6B (KDM6B) in the anterior cingulate cortex (ACC) in chronic visceral pain. To simulate clinical IBS conditions, we utilized the neonatal maternal deprivation (NMD) mouse model. Our results demonstrated that NMD induced chronic visceral pain and anxiety-like behaviors in mice. Notably, the protein expression level of KDM6B significantly increased in the ACC of NMD mice, leading to a reduction in the expression level of H32K7me3. Immunofluorescence staining revealed that KDM6B primarily co-localizes with neurons in the ACC, with minimal presence in microglia and astrocytes. Injecting GSK-J4 (a KDM6B-specific inhibitor) into ACC of NMD mice, resulted in a significant alleviation in chronic visceral pain and anxiety-like behaviors, as well as a remarkable reduction in NR2B expression level. ChIP assay further indicated that KDM6B regulates NR2B expression by influencing the demethylation of H3K27me3. In summary, our findings underscore the critical role of KDM6B in regulating chronic visceral pain and anxiety-like behaviors in NMD mice. These insights provide a basis for further understanding the molecular pathways involved in IBS and may pave the way for targeted therapeutic interventions.

2.
Curr Issues Mol Biol ; 46(3): 1851-1864, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534737

RESUMEN

Autism spectrum disorder (ASD) is thought to result from susceptibility genotypes and environmental risk factors. The offspring of women who experience pregnancy infection have an increased risk for autism. Maternal immune activation (MIA) in pregnant animals produces offspring with autistic behaviors, making MIA a useful model for autism. However, how MIA causes autistic behaviors in offspring is not fully understood. Here, we show that NKCC1 is critical for mediating autistic behaviors in MIA offspring. We confirmed that MIA induced by poly(I:C) infection during pregnancy leads to autistic behaviors in offspring. We further demonstrated that MIA offspring showed significant microglia activation, excessive dendritic spines, and narrow postsynaptic density (PSD) in their prefrontal cortex (PFC). Then, we discovered that these abnormalities may be caused by overexpression of NKCC1 in MIA offspring's PFCs. Finally, we ameliorated the autistic behaviors using PFC microinjection of NKCC1 inhibitor bumetanide (BTN) in MIA offspring. Our findings may shed new light on the pathological mechanisms for autism caused by pregnancy infection.

3.
BMC Nurs ; 23(1): 20, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183055

RESUMEN

BACKGROUND: Persistent pain is the most reported symptom in patients with rheumatoid arthritis (RA); however, effective and brief assessment tools are lacking. We validated the Chinese version of the Global Pain Scale (C-GPS) in Chinese patients with RA and proposed a short version of the C-GPS (s-C-GPS). METHOD: The study was conducted using a face-to-face questionnaire survey with a multicenter cross-sectional design from March to December 2019. Patients aged > 18 years who met the RA diagnostic criteria were included. Based on the classical test theory (CTT) and the item response theory (IRT), we assessed the validity and reliability of the C-GPS and the adaptability of each item. An s-C-GPS was developed using IRT-based computerized adaptive testing (CAT) analytics. RESULTS: In total, 580 patients with RA (mean age, 51.04 ± 24.65 years; mean BMI, 22.36 ± 4.07 kg/m2), including 513 (88.4%) women, were included. Most participants lived in a suburb (49.3%), were employed (72.2%) and married (91.2%), reported 9-12 years of education (66.9%), and had partial medical insurance (57.8%). Approximately 88.1% smoked and 84.5% drank alcohol. Analysis of the CTT demonstrated that all items in the C-GPS were positively correlated with the total scale score, and the factor loadings of all these items were > 0.870. A significant positive relationship was found between the Visual Analog Scale (VAS) and the C-GPS. IRT analysis showed that discrimination of the C-GPS was between 2.271 and 3.312, and items 6, 8, 13, 14, and 16 provided a large amount of information. Based on the CAT and clinical practice, six items covering four dimensions were included to form the s-C-GPS, all of which had very high discrimination. The s-C-GPS positively correlated with the VAS. CONCLUSION: The C-GPS has good reliability and validity and can be used to evaluate pain in RA patients from a Chinese cultural background. The s-C-GPS, which contains six items, has good criterion validity and may be suitable for pain assessment in busy clinical practice. TRIAL REGISTRATION: This cross-sectional study was registered in the Chinese Clinical Trial Registry (ChiCTR1800020343), granted on December 25, 2018.

4.
J Neurosci ; 42(43): 8154-8168, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36100399

RESUMEN

Chronic visceral pain is a major challenge for both patients and health providers. Although the central sensitization of the brain is thought to play an important role in the development of visceral pain, the detailed neural circuits remain largely unknown. Using a well-established chronic visceral hypersensitivity model induced by neonatal maternal deprivation (NMD) in male mice, we identified a distinct pathway whereby the claustrum (CL) glutamatergic neuron projecting to the anterior cingulate cortex (ACC) is critical for visceral pain but not for CFA-evoked inflammatory pain. By a combination of in vivo circuit-dissecting extracellular electrophysiological approaches and visceral pain related electromyographic (EMG) recordings, we demonstrated that optogenetic inhibition of CL glutamatergic activity suppressed the ACC neural activity and visceral hypersensitivity of NMD mice whereas selective activation of CL glutamatergic activity enhanced the ACC neural activity and evoked visceral pain of control mice. Further, optogenetic studies demonstrate a causal link between such neuronal activity and visceral pain behaviors. Chemogenetic activation or inhibition of ACC neural activities reversed the effects of optogenetic manipulation of CL neural activities on visceral pain responses. Importantly, molecular detection showed that NMD significantly enhances the expression of NMDA receptors and activated CaMKIIα in the ACC postsynaptic density (PSD) region. Together, our data establish a functional role for CL→ACC glutamatergic neurons in gating visceral pain, thus providing a potential treatment strategy for visceral pain.SIGNIFICANCE STATEMENT Studies have shown that sensitization of anterior cingulate cortex (ACC) plays an important role in chronic pain. However, it is as yet unknown whether there is a specific brain region and a distinct neural circuit that helps the ACC to distinguish visceral and somatic pain. The present study demonstrates that claustrum (CL) glutamatergic neurons maybe responding to colorectal distention (CRD) rather than somatic stimulation and that a CL glutamatergic projection to ACC glutamatergic neuron regulates visceral pain in mice. Furthermore, excessive NMDA receptors and overactive CaMKIIα in the ACC postsynaptic density (PSD) region were observed in mice with chronic visceral pain. Together, these findings reveal a novel neural circuity underlying the central sensitization of chronic visceral pain.


Asunto(s)
Claustro , Dolor Visceral , Ratas , Masculino , Ratones , Animales , Giro del Cíngulo/fisiología , Dolor Visceral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ratas Sprague-Dawley
5.
Mol Pain ; 19: 17448069221149834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36550612

RESUMEN

Irritable bowel syndrome (IBS) related chronic visceral pain affects 20% of people worldwide. The treatment options are very limited. Although the scholarly reviews have appraised the potential effects of the intestinal microbiota on intestinal motility and sensation, the exact mechanism of intestinal microbiota in IBS-like chronic visceral pain remains largely unclear. The purpose of this study is to investigate whether Folic Acid (FA) attenuated visceral pain and its possible mechanisms. Chronic visceral hyperalgesia was induced in rats by neonatal colonic inflammation (NCI). 16S rDNA analysis of fecal samples from human subjects and rats was performed. Patch clamp recording was used to determine synaptic transmission of colonic-related spinal dorsal horn. Alpha diversity of intestinal flora was increased in patients with IBS, as well as the obviously increased abundance of Clostridiales order (a main bacteria producing hydrogen sulfide). The hydrogen sulfide content was positive correlation with visceral pain score in patients with IBS. Consistently, NCI increased Clostridiales frequency and hydrogen sulfide content in feces of adult rats. Notably, the concentration of FA was markedly decreased in peripheral blood of IBS patients compared with non-IBS human subjects. FA supplement alleviated chronic visceral pain and normalized the Clostridiales frequency in NCI rats. In addition, FA supplement significantly reduced the frequency of sEPSCs of neurons in the spinal dorsal horn of NCI rats. Folic Acid treatment attenuated chronic visceral pain of NCI rats through reducing hydrogen sulfide production from Clostridiales in intestine.


Asunto(s)
Sulfuro de Hidrógeno , Síndrome del Colon Irritable , Dolor Visceral , Humanos , Adulto , Ratas , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Ratas Sprague-Dawley , Clostridiales , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Hidrógeno , Dolor Visceral/tratamiento farmacológico , Inflamación , Sulfuros
6.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G356-G367, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529842

RESUMEN

Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Síndrome del Colon Irritable , Dolor Visceral , Ratones , Animales , Giro del Cíngulo , Dolor Visceral/metabolismo , Hiperalgesia/etiología , Privación Materna , Exosomas/metabolismo , Proteínas rab27 de Unión a GTP/genética , Proteínas rab27 de Unión a GTP/metabolismo
7.
Biochem Biophys Res Commun ; 683: 149114, 2023 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-37857164

RESUMEN

Long noncoding RNA (lncRNA) is implicated in both cancer development and pain process. However, the role of lncRNA in the development of cancer-induced bone pain (CIBP) is unclear. LncRNA NONRATT014888.2 is highly expressed in tibia related dorsal root ganglions (DRGs) in CIBP rats which function is unknown. CIBP was induced by injection of Walker 256 mammary gland tumor cells into the tibia canal of female SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. Down-regulation of NONRATT014888.2 by siRNA in CIBP rats markedly attenuated hind-paw mechanical pain hypersensitivity. LncRNA-predicted target mRNAs analysis and mRNA sequencing results cued Socs3, Npr3 were related with NONRATT014888.2. Intrathecal injection of NONRATT014888.2-siR206 upregulated Npr3 both in mRNA and protein level. Npr3 was co-expressed in NONRATT014888.2-positive DRGs neurons and mainly located in cytoplasm, but not in Glial fibrillary acidic protein (GFAP)-positive cells. Intrathecal injection of ADV-Npr3 upregulated Npr3 expression and enhanced the PWT of CIBP rats. Our results suggest that upregulated lncRNA NONRATT014888.2 contributed to hyperalgesia in CIBP rats, and the mechanism may through downregulation of Npr3.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Neoplasias , ARN Largo no Codificante , Ratas , Femenino , Animales , ARN Largo no Codificante/genética , Regulación hacia Abajo , Ratas Sprague-Dawley , Dolor/genética , Dolor/metabolismo , Dolor en Cáncer/genética , Dolor en Cáncer/patología , Hiperalgesia/genética , ARN Mensajero/metabolismo , Péptidos Natriuréticos/metabolismo , Neoplasias Óseas/complicaciones , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo
8.
Mol Pain ; 18: 17448069221143671, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36411533

RESUMEN

DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in neurons in mammals. However, effects of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression and hydroxymethylation status on neuron injury remain unclear. This study was designed to explore the effects of TET1 and TET2 expression in the inflammatory pain of rats induced by complete Freund's adjuvant (CFA). Mechanical paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL) were detected to assess pain behavior. The expression of TET1 and TET2 were measured in the dorsal root ganglion (DRG) with western blotting analysis. Immunofluorescence staining is employed to detect the expression and co-location of TRPV1 with TET1. Intrathecal administration of Bobcat339 was used to inhibit TET1 function in dorsal root ganglion. The paw withdrawal threshold and thermal withdrawal latency of rats were significantly reduced after CFA Injection. Western blot results showed that the expression of TET1 was significantly increased at 3 days after CFA injection, but TET2 had no statistical difference. Immunofluorescence results showed that TET1 was co-localized with TRPV1. Intrathecal administration of Bobcat339 improved mechanical and thermal pain threshold in CFA rats. Our findings highlight the role of TET1 in chronic inflammatory pain model. The expression of TET1 was increased in CFA rats, and suppression of TET1 will ameliorate inflammatory pain.


Asunto(s)
Dolor Crónico , Dioxigenasas , Animales , Ratas , Dolor Crónico/complicaciones , Dioxigenasas/metabolismo , Adyuvante de Freund/toxicidad , Ganglios Espinales , Umbral del Dolor
9.
Acta Pharmacol Sin ; 43(1): 240-250, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33686244

RESUMEN

Cardiovascular safety assessment is vital for drug development, yet human cardiovascular cell models are lacking. In vitro mass-generated human pluripotent stem cell (hPSC)-derived cardiovascular cells are a suitable cell model for preclinical cardiovascular safety evaluations. In this study, we established a preclinical toxicology model using same-origin hPSC-differentiated cardiomyocytes (hPSC-CMs) and endothelial cells (hPSC-ECs). For validation of this cell model, alirocumab, a human antibody against proprotein convertase subtilisin kexin type 9 (PCSK9), was selected as an emerging safe lipid-lowering drug; atorvastatin, a common statin (the most effective type of lipid-lowering drug), was used as a drug with reported side effects at high concentrations, while doxorubicin was chosen as a positive cardiotoxic drug. The cytotoxicity of these drugs was assessed using CCK8, ATP, and lactate dehydrogenase release assays at 24, 48, and 72 h. The influences of these drugs on cardiomyocyte electrophysiology were detected using the patch-clamp technique, while their effects on endothelial function were determined by tube formation and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake assays. We showed that alirocumab did not affect the cell viability or cardiomyocyte electrophysiology in agreement with the clinical results. Atorvastatin (5-50 µM) dose-dependently decreased cardiovascular cell viability over time, and at a high concentration (50 µM, ~100 times the normal peak serum concentration in clinic), it affected the action potentials of hPSC-CMs and damaged tube formation and Dil-Ac-LDL uptake of hPSC-ECs. The results demonstrate that the established same-origin hPSC-derived cardiovascular cell model can be used to evaluate lipid-lowering drug safety in cardiovascular cells and allow highly accurate preclinical assessment of potential drugs.


Asunto(s)
Anticolesterolemiantes/farmacología , Atorvastatina/farmacología , Células Endoteliales/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Anticolesterolemiantes/química , Atorvastatina/química , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
10.
J Neurophysiol ; 125(5): 1787-1797, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33760644

RESUMEN

Irritable bowel syndrome (IBS) is one of the most common challenging diseases for clinical treatment. The aim of this study is to investigate whether transcranial direct current stimulation (tDCS) has analgesic effect on visceral hypersensitivity (VH) in an animal model of IBS as well as the underlying mechanism. As the activation of GluN2B in anterior cingulate cortex (ACC) takes part in VH, we examined whether and how GluN2B in ACC takes part in the effect of tDCS. Neonatal maternal deprivation (NMD), a valuable experimental model to study the IBS pathophysiology, was used to induce visceral hypersensitivity of rats. We quantified VH as colorectal distention threshold and performed patch-clamp recordings of ACC neurons. The expression of GluN2B were determined by RT-qPCR and Western blotting. The GluN2B antagonist Ro 25-6981 was microinjected into the rostral and caudal ACC. tDCS was performed for 7 consecutive days. It was found that NMD decreased expression of GluN2B, which could be obviously reversed by tDCS. Injection of Ro 25-6981 into rostral and caudal ACC of normal rats induced VH and also reversed the analgesic effect of tDCS. Our data sheds light on the nonpharmacological therapy for chronic VH in pathological states such as IBS.NEW & NOTEWORTHY Irritable bowel syndrome (IBS) is a gastrointestinal disease characterized by visceral hypersensitivity. This study showed a decrease of GluN2B expression and neural activity in ACC of IBS-model rats, which could be obviously reversed by tDCS. In addition, blockade of GluN2B in rostral and caudal ACC induced VH of normal rats. Furthermore, analgesic effect of tDCS on NMD rats was reversed by GluN2B antagonist.


Asunto(s)
Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiopatología , Hiperalgesia/terapia , Síndrome del Colon Irritable/terapia , Receptores de N-Metil-D-Aspartato/metabolismo , Estimulación Transcraneal de Corriente Directa , Dolor Visceral/terapia , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Giro del Cíngulo/efectos de los fármacos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Técnicas de Placa-Clamp , Fenoles/farmacología , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Dolor Visceral/metabolismo , Dolor Visceral/fisiopatología
11.
Biochem Biophys Res Commun ; 572: 98-104, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364296

RESUMEN

BACKGROUND: Cancer-induced bone pain (CIBP) is one of the most severe types of chronic pain which the involved mechanisms are largely unknown. LncRNA has been found to play critical roles in chronic pain. However, its function in peripheral nervous system in CIBP remains unknown. Identifying the different lncRNA expression pattern is essential for understanding the genetic mechanisms underlying the pathogenesis of CIBP. METHODS: The model was induced by injection of Walker 256 cells into the rat tibia canal. Behavior tests and X-ray microtomography (MicroCT) analysis were performed to verify the model's establishment. L2-L5 DRGs were harvested at 14-day post operation and the differential lncRNA and mRNA expression patterns were investigated by microarray analyses. RT-qPCR analysis and RNA interference were performed for expression and function verifications. Bioinformatics analysis was conducted for further function study. RESULTS: CIBP rats showed hyperalgesia and the MicroCT analysis showed tibia destruction. A total of 73 lncRNAs and 187 mRNAs were dysregulated. The expressions of several lncRNAs and mRNAs were validated by RT-qPCR experiment. Biological analyses showed that the changed mRNAs were mainly related to cellular and single-organism process, cell and cell part, binding function and immune system pathway. The top 30 lncRNA-predicted mRNAs are mainly related to peroxisome, DNA-dependent DNA replication, double-stranded RNA binding, tuberculosis and purine metabolism. 56 lncRNAs (30 downregulated and 26 upregulated) and 179 DEGs (35 downregulated and 144 upregulated) have a significant correlation and constructed a co-expression network. Downregulation of lncRNA NONRATT021203.2 by siRNA intrathecal injection increased PWL and WBD in CIBP rats, alleviating cancer induced bone hyperalgesia. CONCLUSION: LncRNA played important roles in regulation of CIBP or mRNA expression in peripheral neuropathy in CIBP. These alterd mRNAs and lncRNAs might be potential therapeutic targets for the treatment of CIBP.


Asunto(s)
Neoplasias Óseas/genética , Dolor en Cáncer/genética , Ganglios Espinales/patología , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Neoplasias Óseas/patología , Dolor en Cáncer/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Ratas
12.
Mol Pain ; 16: 1744806920930858, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32484026

RESUMEN

AIMS: The arcuate nucleus is a vital brain region for coursing of pain command. G protein-coupled kinase 6 (GRK6) accommodates signaling through G protein-coupled receptors. Studies have demonstrated that GRK6 is involved in inflammatory pain and neuropathic pain. The present study was designed to explore the role and the underlying mechanism of GRK6 in arcuate nucleus of chronic visceral pain. METHODS: Chronic visceral pain of rats was induced by neonatal maternal deprivation and evaluated by monitoring the threshold of colorectal distension. Western blotting, immunofluorescence, real-time quantitative polymerase chain reaction techniques, and Nissl staining were employed to determine the expression and mutual effect of GRK6 with nuclear factor κB (NF-κB). RESULTS: Expression of GRK6 in arcuate nucleus was significantly reduced in neonatal maternal deprivation rats when compared with control rats. GRK6 was mainly expressed in arcuate nucleus neurons, but not in astrocytes, and a little in microglial cells. Neonatal maternal deprivation reduced the percentage of GRK6-positive neurons of arcuate nucleus. Overexpression of GRK6 by Lentiviral injection into arcuate nucleus reversed chronic visceral pain in neonatal maternal deprivation rats. Furthermore, the expression of NF-κB in arcuate nucleus was markedly upregulated in neonatal maternal deprivation rats. NF-κB selective inhibitor pyrrolidine dithiocarbamate suppressed chronic visceral pain in neonatal maternal deprivation rats. GRK6 and NF-κB were expressed in the arcuate nucleus neurons. Importantly, overexpression of GRK6 reversed NF-κB expression at the protein level. In contrast, injection of pyrrolidine dithiocarbamate once daily for seven consecutive days did not alter GRK6 expression in arcuate nucleus of neonatal maternal deprivation rats. CONCLUSIONS: Present data suggest that GRK6 might be a pivotal molecule participated in the central mechanisms of chronic visceral pain, which might be mediated by inhibiting NF-κB signal pathway. Overexpression of GRK6 possibly represents a potential strategy for therapy of chronic visceral pain.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Dolor Crónico/metabolismo , Regulación hacia Abajo , Quinasas de Receptores Acoplados a Proteína-G/genética , Privación Materna , FN-kappa B/metabolismo , Regulación hacia Arriba/genética , Dolor Visceral/metabolismo , Animales , Animales Recién Nacidos , Dolor Crónico/complicaciones , Regulación hacia Abajo/efectos de los fármacos , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Masculino , FN-kappa B/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pirrolidinas/farmacología , Ratas Sprague-Dawley , Tiocarbamatos/farmacología , Regulación hacia Arriba/efectos de los fármacos , Dolor Visceral/complicaciones
13.
Biochem Biophys Res Commun ; 524(4): 983-989, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32061390

RESUMEN

Cancer-induced pain (CIP) is a kind of chronic pain that occurs during cancer progression over time. However, the mechanisms are largely unknown, and clinical treatment remains challenging. LncRNAs have been reported to play critical roles in various biological processes, including chronic pain. The aim of our study was to investigate whether lncRNAs participate in the development of CIP by regulating the expression levels of some molecules related to pain modulation. The CIP model was established by injecting Walker 256 mammary gland tumor cells into the tibial canal of rats. In this study, we found that lncRNA-NONRATT021203.2 was increased in the CIP rats and that lncRNA-NONRATT021203.2-siRNA could relieve hyperalgesia in these rats. For elucidation of the underlying mechanism, we showed that lncRNA-NONRATT021203.2 could target C-X-C motif chemokine ligand 9 (CXCL9), which was increased in the CIP rats, and that CXCL9-siRNA could relieve hyperalgesia. At the same time, silencing lncRNA-NONRATT021203.2 expression decreased the mRNA and protein levels of CXCL9. Immunofluorescence analysis showed that CXCL9 was mainly expressed in the CGRP-positive and IB4-positive DRG neurons. Further research showed that lncRNA-NONRATT021203.2 and CXCL9 were colocalized in the DRG neurons. Our data suggested that lncRNA-NONRATT021203.2 participated in the CIP in rats and likely mediates the upregulation of CXCL9. The present study provided us with a new potential target for the clinical treatment of cancer-induced pain.


Asunto(s)
Dolor en Cáncer/genética , Quimiocina CXCL9/genética , Ganglios Espinales/patología , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Animales , Dolor en Cáncer/patología , Femenino , Ganglios Espinales/metabolismo , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
14.
Psychol Health Med ; 25(10): 1179-1191, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32129673

RESUMEN

This study aimed to assess the effects of cognitive behavioral therapy on the psychological and physiological health of rheumatoid arthritis patients. An extensive literature search was conducted, using the PubMed, Web of Science, Cochrane Library, Embase, CNKI Scholar, WanFang, and VIP databases, from inception to December2018. The quality of the studies was evaluated by 2 independent authors, according to the basic criteria provided by the Cochrane Handbook for evaluating randomized trials. Meta-analysis was performed with Review Manager 5.3. Six randomized controlled trials met the inclusion criteria of the current study. Using standard mean differences (SMD) and 95% confidence intervals (CI), our results showed that cognitive behavioral therapy could significantly reduce levels of anxiety (SMD = -0.30, 95% CI [-0.52, -0.09], P= 0.005) and depression (SMD = -0.48, 95% CI [-0.70, -0.27], P< 0.00001), and relieve fatigue symptoms (SMD = -0.35, 95% CI [-0.60, -0.10], P= 0.006) in rheumatoid arthritis patients.This is the first known assessment of the efficacy of cognitive behavioral therapy on rheumatoid arthritis patients using meta-analysis. Large-scale randomized controlled trials need to be implemented to further explore this issue.


Asunto(s)
Ansiedad/rehabilitación , Artritis Reumatoide/psicología , Artritis Reumatoide/rehabilitación , Terapia Cognitivo-Conductual , Fatiga/rehabilitación , Humanos
15.
Mol Pain ; 15: 1744806919838659, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838902

RESUMEN

BACKGROUND AND AIM: Diabetic neuropathic pain is a refractory and disabling complication of diabetes mellitus. The pathogenesis of the diabetic neuropathic pain is still unclear, and treatment is insufficient. The aim of this study is to investigate the roles of glucose-6-phosphate dehydrogenase (G6PD) and toll-like receptor 4 (TLR4) in neuropathic pain in rats with diabetes. METHODS: Type 1 diabetes model was induced by intraperitoneal injection of streptozotocin (STZ, 75 mg/kg) in adult female Sprague-Dawley rats. Paw withdrawal threshold and paw withdrawal latency of rats were measured by von Frey filaments and thermal radiation, respectively. The expressions of G6PD and TLR4 in L4-L6 dorsal root ganglions (DRGs) were measured by western blotting and quantitative real-time polymerase chain reaction analysis. Fluorescent immunohistochemistry was employed to detect expressions of G6PD and TLR4 and co-location of G6PD with TLR4. RESULTS: The mRNA and protein expression levels of G6PD in DRGs were significantly decreased in diabetic rats when compared with age-matched control rats. Upregulation of G6PD by intrathecal injection of G6PD overexpression adenovirus markedly attenuated hindpaw pain hypersensitivity of diabetic rats. The mRNA and protein expression levels of TLR4 in DRGs of diabetic rats were significantly increased when compared with control rats. Intrathecal injection of TLR4-selective inhibitor CLI-095 attenuated diabetic pain in dose- and time-dependent manners. Furthermore, G6PD and TLR4 were co-localized in DRG neurons. Intrathecal injection of G6PD overexpression adenovirus greatly reduced TLR4 expression, while intrathecal injection of CLI-095 had no significant effect on G6PD expression in diabetic rats. CONCLUSIONS: Our results suggest that decrease in G6PD expression was involved in diabetic peripheral neuropathic pain, which was most likely through upregulation of TLR4 expression in the DRGs of rats.


Asunto(s)
Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Glucosafosfato Deshidrogenasa/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sulfonamidas/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética
16.
Mol Pain ; 14: 1744806918764731, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29560791

RESUMEN

Aims Insular cortex is a brain region critical for processing of the sensation. Purinergic receptors are involved in the formation of chronic pain. The aim of the present study was to explore the role and mechanism of P2X3 receptors (P2X3Rs) in insular cortex in chronic visceral pain. Methods Chronic visceral pain in adult rats was induced by neonatal maternal deprivation and measured by detecting the threshold of colorectal distension. Western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction techniques were used to detect the expression and distribution of P2X3Rs. Synaptic transmission in insular cortex was recorded in brain slices by patch clamp techniques. Results Expression of P2X3Rs both at mRNA and protein levels in right hemisphere of insular cortex was significantly increased in neonatal maternal deprivation rats. In addition, P2X3Rs were expressed with NeuN or synaptophysin but not with glial fibrillary acidic protein and CD11b. The co-localization of P2X3Rs with NeuN or synaptophysin was greatly enhanced in right hemisphere of insular cortex in neonatal maternal deprivation rats. Furthermore, neonatal maternal deprivation markedly increased both the frequency and amplitude of miniature excitatory postsynaptic current in right hemisphere of insular cortex. Incubation of A347091 significantly decreased the frequency of spontaneous excitatory postsynaptic current and miniature excitatory postsynaptic current of insular cortex neurons of neonatal maternal deprivation rats. Incubation of P2X3Rs agonists α,ß-mATP remarkably increased the frequency of spontaneous excitatory postsynaptic current and miniature excitatory postsynaptic current of the right hemisphere of insular cortex neurons of healthy control rats. Importantly, injection of A317491 significantly enhanced the colorectal distension threshold of neonatal maternal deprivation rats, while injection of α,ß-mATP into right but not left insular cortex markedly decreased the colorectal distension threshold in healthy control rats. Conclusions Overall, our data provide integrated pharmacological, biochemical, and functional evidence demonstrating that P2X3Rs are physically and functionally interconnected at the presynaptic level to control synaptic activities in the right insular cortex, thus contributing to visceral pain of neonatal maternal deprivation rats.


Asunto(s)
Envejecimiento/metabolismo , Corteza Cerebral/metabolismo , Privación Materna , Receptores Purinérgicos P2X3/metabolismo , Dolor Visceral/metabolismo , Dolor Visceral/patología , Animales , Animales Recién Nacidos , Antígenos Nucleares/metabolismo , Corteza Cerebral/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenoles/farmacología , Compuestos Policíclicos/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinaptofisina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Dolor Visceral/genética
17.
Mol Pain ; 14: 1744806918777406, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29712513

RESUMEN

Irritable bowel syndrome is a disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that stressors presented during gestational periods could have long-term effects on the offspring's tissue structure and function, which may predispose to gastrointestinal diseases. The aim of the present study is to determine whether prenatal maternal stressis a adverse factor affecting gastrointestinal sensitivity and to investigate possible mechanisms underlying prenatal maternal stress-induced visceral hypersensitivity in adult offspring. Prenatal maternal stress was induced in pregnant Sprague-Dawley rats by exposure to heterotypic intermitent stress from gestational day 7 to delivery. Prenatal maternal stress significantly increased visceromotor response to colorectal distention in adult offspring from the age of 6 weeks to 10 weeks. Prenatal maternal stress also enhanced neuronal excitability including depolarization of resting membrane potentials, reduction in rheobase, and an increase in the number of action potentials evoked by 2× and 3× rheobase current stimultion of colon-specific dorsal root ganglion neurons. Prenatal maternal stress remarkably enhanced expression of cystathionine-ß-synthase and Nav1.7 in T13-L2 thoracolumbar dorsal root ganglions both at protein and mRNA levels. Intraperitoneal injection of aminooxyacetic acid, an inhibitor of cystathionine-ß-synthase, attenuated prenatal maternal stress-induced visceral hypersensitivity in a dose-dependent manner. A consecutive seven-day administration of aminooxyacetic acid reversed the hyperexcitability of colon-specific dorsal root ganglion neurons and markedly reduced Nav1.7 expression. These results indicate that the presence of multiple psychophysical stressors during pregnancy is associated with visceral hypersensitivity in offspring, which is likely mediated by an upregualtion of cystathionine-ß-synthase and Nav1.7 expression. Prenatal maternal stress might be a significant contributor to irritable bowel syndrome, and cystathionine-ß-synthase might be a potential target for treatment for chronic visceral hypersensitivity in patients with irritable bowel syndrome.


Asunto(s)
Cistationina betasintasa/metabolismo , Efectos Tardíos de la Exposición Prenatal/enzimología , Células Receptoras Sensoriales/enzimología , Transducción de Señal , Estrés Psicológico/complicaciones , Dolor Visceral/enzimología , Dolor Visceral/etiología , Animales , Células Cultivadas , Colon/inervación , Colon/patología , Cistationina betasintasa/antagonistas & inhibidores , Cistationina betasintasa/genética , Electromiografía , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Masculino , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Especificidad de Órganos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Dolor Visceral/patología
18.
Sheng Li Xue Bao ; 70(1): 52-60, 2018 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-29492515

RESUMEN

The glymphatic system is a cerebrospinal fluid-interstitial fluid exchange system dependent on the water channel aquaporin-4 polarized on astrocyte endfeet, which is proposed to account for the clearance of abnormal proteins (e.g. ß-amyloid) and metabolites (e.g. lactate) from the brain. Accumulating studies have revealed that glymphatic activity during sleep and general anesthesia is dramatically enhanced, while its function is significantly damaged during aging, traumatic brain injury, Alzheimer's disease, stroke, and diabetes. The glymphatic hypothesis is a breakthrough in the field of neuroscience recently, which would considerably enhance our comprehension on the cerebrospinal fluid circulation and its role in the maintenance of brain homeostasis. In this review, we briefly introduced the conceptualization of glymphatic system, summarized the recent progresses, and prospected its future investigation and potential clinical application.


Asunto(s)
Encéfalo/fisiología , Líquido Cefalorraquídeo/fisiología , Líquido Extracelular/fisiología , Acuaporina 4/fisiología , Astrocitos/citología , Homeostasis , Humanos
19.
Mol Pain ; 13: 1744806917697979, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28337946

RESUMEN

Background Pain in patients with chronic pancreatitis is critical hallmark that accompanied inflammation, fibrosis, and destruction of glandular pancreas. Many researchers have demonstrated that stromal cell-derived factor 1 (also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) involved in mediating neuropathic and bone cancer pain. However, their roles in chronic pancreatic pain remain largely unclear. Methods Chronic pancreatitis was induced by intraductal injection of trinitrobenzene sulfonic acid to the pancreas. Von Frey filament tests were conducted to evaluate pancreas hypersensitivity of rat. Expression of CXCL12, CXCR4, NaV1.8, and pERK in rat dorsal root ganglion was detected by Western blot analyses. Dorsal root ganglion neuronal excitability was assessed by electrophysiological recordings. Results We showed that both CXCL12 and CXCR4 were dramatically up-regulated in the dorsal root ganglion in trinitrobenzene sulfonic acid-induced chronic pancreatitis pain model. Intrathecal application with AMD3100, a potent and selective CXCR4 inhibitor, reversed the hyperexcitability of dorsal root ganglion neurons innervating the pancreas of rats following trinitrobenzene sulfonic acid injection. Furthermore, trinitrobenzene sulfonic acid-induced extracellular signal-regulated kinase activation and Nav1.8 up-regulation in dorsal root ganglias were reversed by intrathecal application with AMD3100 as well as by blockade of extracellular signal-regulated kinase activation by intrathecal U0126. More importantly, the trinitrobenzene sulfonic acid-induced persistent pain was significantly suppressed by CXCR4 and extracellular signal-regulated kinase inhibitors. Conclusions The present results suggest that the activation of CXCL12-CXCR4 signaling might contribute to pancreatic pain and that extracellular signal-regulated kinase-dependent Nav1.8 up-regulation might lead to hyperexcitability of the primary nociceptor neurons in rats with chronic pancreatitis.


Asunto(s)
Dolor Abdominal/etiología , Dolor Abdominal/metabolismo , Pancreatitis Crónica/complicaciones , Receptores CXCR4/metabolismo , Regulación hacia Arriba/fisiología , Dolor Abdominal/tratamiento farmacológico , Dolor Abdominal/patología , Análisis de Varianza , Animales , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Bencilaminas , Células Cultivadas , Ciclamas , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Masculino , Potenciales de la Membrana/efectos de los fármacos , Dimensión del Dolor , Técnicas de Placa-Clamp , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/genética , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
Mol Pain ; 13: 1744806916688901, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28326931

RESUMEN

Background Cancer-induced pain (CIP) is one of the most severe types of chronic pain with which clinical treatment remains challenging and the involved mechanisms are largely unknown. Suppressor of cytokine signaling 3 (SOCS3) is an important intracellular protein and provides a classical negative feedback loop, thus involving in a wide variety of processes including inflammation and nociception. However, the role of SOCS3 pathway in CIP is poorly understood. The present study was designed to investigate the role of SOCS3 in dorsal root ganglion (DRG) in the development of CIP. Method CIP was established by injection of Walker 256 mammary gland tumor cells into the rat tibia canal. Whole-cell patch clamping and Western blotting were performed. Results Following the development of bone cancer, SOCS3 expression was significantly downregulated in rat DRGs at L2-L5 segments. Overexpression of SOCS3, using lentiviral-mediated production of SOCS3 at spinal cord level, drastically attenuated mechanical allodynia and body weight-bearing difference, but not thermal hyperalgesia in bone cancer rats. In addition, overexpression of SOCS3 reversed the hyperexcitability of DRG neurons innervating the tibia, and reduced abnormal expression of toll-like receptors 4 in the DRGs. Conclusions These results suggest that SOCS3 might be a key molecular involved in the development of complicated cancer pain and that overexpression of SOCS3 might be an important strategy for treatment for mechanical allodynia associated with bone cancer.


Asunto(s)
Dolor en Cáncer/terapia , Citocinas/metabolismo , Ganglios Espinales/fisiología , Terapia Genética/métodos , Hiperalgesia/etiología , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Animales , Dolor en Cáncer/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Ganglios Espinales/citología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Umbral del Dolor/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Estadísticas no Paramétricas , Proteína 3 Supresora de la Señalización de Citocinas/genética , Receptor Toll-Like 3/metabolismo , Soporte de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA