Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38436892

RESUMEN

Metastasis remains the principal trigger for relapse and mortality across diverse cancer types. Circulating tumor cells (CTCs), which originate from the primary tumor or its metastatic sites, traverse the vascular system, serving as precursors in cancer recurrence and metastasis. Nevertheless, before CTCs can establish themselves in the distant parenchyma, they must overcome significant challenges present within the circulatory system, including hydrodynamic shear stress (HSS), oxidative damage, anoikis, and immune surveillance. Recently, there has been a growing body of compelling evidence suggesting that a specific subset of CTCs can persist within the bloodstream, but the precise mechanisms of their survival remain largely elusive. This review aims to present an outline of the survival challenges encountered by CTCs and to summarize the recent advancements in understanding the underlying survival mechanisms, suggesting their implications for cancer treatment.

2.
FASEB J ; 36(1): e22121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951719

RESUMEN

Protein aggregation and degradation via autophagy (aggrephagy) are major strategies adopted by cells to remove misfolded polypeptides when there is proteasome dysfunction. The functional protein complex consisting of heat shock protein 70 (Hsp70), cochaperone ubiquitin ligase carboxyl-terminal of Hsp70/Hsp90 interacting protein (CHIP), and co-chaperone Bcl-2-associated athanogene 3 (BAG3) has been associated with the activation of protein aggregation. However, data on the mechanisms of action of the complex in the protein degradation remains scant. Here, we report that upon proteasome stress, the M2 isoform of pyruvate kinase (PKM2) promotes the aggregation of ubiquitinated proteins and its knockout or knockdown aggravates the sensitivity of cells to proteasome inhibitors. Besides, following proteasome inhibition, PKM2 promotes the interaction of BAG3 with CHIP and HSP70. Interestingly, re-expression of loss-of-function mutants in PKM2-knockout cells showed that the regulatory function of PKM2 in this progress does not depend on the activity of glycolytic enzymes or protein kinases. Taken together, these findings demonstrate that PKM2 mediates the formation of the CHIP-HSP70-BAG3 protein complex and promotes the aggregation of ubiquitinated misfolded proteins, thus compensating for proteasome stress in cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Piruvato Quinasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Células Hep G2 , Humanos , Complejos Multiproteicos/genética , Complejo de la Endopetidasa Proteasomal/genética , Piruvato Quinasa/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Ubiquitinadas/genética
3.
Chem Biodivers ; 20(2): e202200899, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36631282

RESUMEN

BACKGROUND: Flavonoid glycosides are known to possess diverse bioactivities including antitumor and anti-inflammatory properties. Hesperetin is abundant in nature and can be used to synthesize bioactive flavonoids. This has the advantages of low cost, short synthetic steps, simple operation, and good yields. OBJECTIVE: In this study, we aimed to synthesize bioactive flavonoids and flavonoid glycosides from hesperetin and evaluate the antitumor and anti-inflammatory activities of these compounds. METHODS: A series of flavonoids and their derivatives were synthesized by methoxylation, oxidative dehydrogenation, benzylation, debenzylation, and deacetylation as well as using a modified peroxyacetone method and a glycoside condensation reaction. Their anti-inflammatory activities were evaluated for their inhibitory effects on nitric oxide (NO), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) production in LPS-induced RAW264.7 mouse macrophages. Their structures were characterized by HRMS, 1 H-NMR, and 13 C-NMR, and their cytotoxicity on the human triple-negative breast cancer cell (TNBC) line, SUM 149, was tested by using the MST assay. RESULTS: Most of the compounds markedly reduced NO production in LPS-stimulated murine macrophages at the tested concentrations in a dose-dependent manner. Among these, compounds 1, 7, 9, and 17 showed significant anti-inflammatory activities against NO production in LPS-induced RAW264.7 mouse macrophages. In addition, they could also reduce the release of TNF-α and IL-6 in a concentration-dependent manner. Most of the tested compounds showed remarkable anti-human TNBC activities. Compounds 1b-1m, 1, and 3 showed a certain degree of growth inhibition effect on the human TNBC cell lines and their IC50 values were all below 16.61 µM. In addition, compound 1l was the most cytotoxic with IC50 values of 1.38±0.31 µM, while the other compounds were inactive with inhibition rates <50 % at the highest concentration tested (20 µM). CONCLUSIONS: A novel series of flavonoids were synthesized from the natural flavonoid, hesperetin, including 17 new compounds. Screening tests indicated that most of these compounds reduced NO production in LPS-stimulated murine macrophages at concentrations of 15 to 60 µM, and the inhibition generally increased in a dose-dependent manner. Some compounds showed different degrees of cytotoxicity on the human TBNC cell lines, SUM 149.


Asunto(s)
Flavonoides , Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , Flavonoides/química , Glicósidos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Óxido Nítrico
4.
Biochem Biophys Res Commun ; 600: 60-66, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35193074

RESUMEN

p38δ is a member of p38 mitogen-activated protein kinases (MAPKs) family that displays cell- and tissue-specific expression patterns. Recent studies demonstrate that p38δ is centrally involved in several pathologic events, such as diabetes, neurodegeneration diseases, inflammatory diseases, and cancer, and suggest that it may be a potential target for diagnosis and therapy of specific diseases. A nanobody is a new type of antibody that exhibits high antigen-binding activity, solubility, stability, and easy production. This study utilized phage display to isolate nanobodies specifically against p38δ from a fully synthetic nanobody library. Two of them, nanobodies Nb13-6 and Nb13-1, display high binding activity to p38δ, less cross-reactivity with other p38 MAPKs, and high thermal and pH stabilities. Modeling and docking analysis indicated that Nb13-6 is mostly linked to the activation loop of p38δ. Furthermore, detailed studies revealed that Nb13-6 inhibited the protein kinase activity of p38δ and the growth of cancer cells. Therefore, this study provides p38δ-specific nanobodies that are promisingly exploited for diagnosing and treating p38δ-associated diseases.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Anticuerpos de Dominio Único , Proteína Quinasa 13 Activada por Mitógenos , Fosforilación , Anticuerpos de Dominio Único/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
5.
Anticancer Drugs ; 33(9): 935-942, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066403

RESUMEN

Chronic stress has been reported to be associated with tumor initiation and progression. But the underlying mechanism and the specific role of tumor immunity in this process are still unknown. Herein, we applied the repeated restrain stress model in C57BL/6J mice and found that the tumor growth in stressed mice was accelerated compared with that in control mice. In addition, serotonin, also called 5-hydroxytryptamine (5-HT), in the serum of stressed mice was also elevated. Sertraline, a selective serotonin reuptake inhibitor used in the clinic, can restore the serum 5-HT level in stressed mice and restrain tumor growth. We further explored the distribution of major immune cells, including B lymphocytes cells, T lymphocytes, natural killer cells, dendritic cells, tumor-associated macrophages (TAM) and regulatory T cells (Treg). We found that the infiltration of CD8 + T cells in the tumor microenvironment (TME) decreased significantly in stressed mice. And the extra 5-HT treatment could further decrease the infiltration of CD8 + T cells in the TME. The expression of IFN-γ and Granular enzyme B (GzmB) in CD8 + T cells were also dropped in the stressed mice group, whereas the expression of programmed cell death protein 1 (PD-1) on CD8 + T cells was increased. The T cell deficiency induced by stress can be reversed by sertraline, indicating its promising role in strengthening the efficacy of anti-PDL1/PD-1 immunotherapy. The present study provides new mechanistic insights into the impact of chronic stress on antitumor immunity and implicates a novel combined immunotherapy strategy for cancer patients with chronic stress.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Serotonina , Animales , Linfocitos T CD8-positivos , Línea Celular Tumoral , Ratones , Ratones Endogámicos C57BL , Inhibidores Selectivos de la Recaptación de Serotonina , Sertralina/farmacología , Microambiente Tumoral
6.
Cancer Sci ; 112(7): 2664-2678, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33934451

RESUMEN

Immunotherapy targeting the PD-L1/PD-1 pathway is a novel type of clinical cancer treatment, but only small subsets of patients can benefit from it because of multiple factors. PD-L1/PD-1 expression is a biomarker for predicting the efficacy of anti-PD-L1/PD-1 therapy, which highlights the importance of understanding the regulatory mechanisms of PD-L1 expression in cancer cells. Casp8 is an apical caspase protease involved in mediating cell apoptosis, but it also has multiple nonapoptotic functions. Casp8 mutations are associated with increased risks of cancer, and low expression of Casp8 is closely connected with poor prognosis in patients with cancer. In addition, mutations of Casp8 in lymphocytes also lead to human immunodeficiency, thereby causing dysfunction of the innate immune system, but the roles of Casp8 in antitumor immunity remain unclear. Here, we found that knocking down Casp8 in mouse melanoma cells promoted tumor progression in an immune system-dependent manner. Mechanistically, Casp8 induced PD-L1 degradation by upregulating TNFAIP3 (A20) expression, a ubiquitin-editing enzyme that results in PD-L1 ubiquitination. In addition, compared with Casp8fl/fl mice, mice with conditional deletion of Casp8 in natural killer (NK) cells (Ncr1iCre/+ Casp8fl/fl mice) showed a decreased frequency of IFN-γ+ and CD107a+ NK cells but an increased frequency of PD-1+ and CTLA-4+ NK cells. Melanoma cells with Casp8 knocked down exhibited sensitivity to anti-PD-1 or anti-CTLA-4 antibody treatments, particularly in Ncr1iCre/+Casp8fl/fl mice. Together, the results indicate that Casp8 induces PD-L1 degradation by upregulating A20 expression and that decreased Casp8 expression is a potential biomarker for predicting the sensitivity to anti-PD-L1/PD-1 immunotherapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Caspasa 8/fisiología , Inmunoterapia Adoptiva/métodos , Melanoma/terapia , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antígeno B7-H1/genética , Antígeno CTLA-4/metabolismo , Caspasa 8/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación hacia Abajo , Proteínas Activadoras de GTPasa/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Melanoma/inmunología , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , FN-kappa B/metabolismo , Ubiquitinación , Regulación hacia Arriba
7.
Anticancer Drugs ; 32(8): 793-801, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675613

RESUMEN

Sertraline and fluoxetine are the two most commonly used selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression. Accumulating evidence has revealed that SSRIs can reduce the risk of hepatocellular carcinoma (HCC), but their therapeutic effects in HCC have not yet been elucidated. Previous studies have reported that sertraline and fluoxetine can suppress the growth of gastric carcinoma, melanoma and nonsmall cell lung cancers by inhibiting the mammalian target rapamycin (mTOR) activity. In this study, we found that sertraline and fluoxetine blocked the protein kinase B (AKT)/mTOR pathway and suppressed the growth of HCC cells in vitro, in xenografts and in diethylnitrosamine/carbon tetrachloride (DEN/CCL4)-induced primary liver mouse model. Sertraline and fluoxetine can synergize with sorafenib, the first approved standard therapy for advanced HCC, to inhibit the viability of HCC cells in vitro and in vivo. In addition, the combination of sorafenib and SSRIs synergistically inhibited the effects of the AKT/mTOR pathway. These results reveal novel therapeutic effects of a combination of SSRIs and sorafenib in HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Floxuridina/farmacología , Neoplasias Hepáticas/patología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Sorafenib/farmacología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Bioorg Med Chem Lett ; 54: 128444, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34763082

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Many studies have shown a significant increase in the marker signal of the receptor for advanced glycation end-products (RAGE) with the malignant progression of tumor growth, metastasis and recurrence of breast cancer, including TNBC of primary tumors and lymph node metastases. Azeliragon is a RAGE inhibitor and it has been shown to actively inhibit the TNBC cell line, SUM149 (IC50 = 5.292 ± 0.310 µM). In order to develop a new anti-TNBC agent, we designed, synthesized and screened 26 Azeliragon triazole analogues to determine their anti-TNBC activities in vitro. The most active compound was KC-10 with an IC50 value of 0.220 ± 0.034 µM.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Imidazoles/farmacología , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química , Neoplasias de la Mama Triple Negativas/patología
9.
Scand J Gastroenterol ; 56(4): 432-436, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33556252

RESUMEN

OBJECTIVE: Mitomycin (MMC)/5-fluoroural (5-FU) with concurrent radiation is the standard treatment of anal squamous cell carcinoma (ASCC). The aim of this study is to evaluate the efficacy and safety of cisplatin/capecitabine (XP) as an alternative with intensity-modulated radiation therapy (IMRT) in ASCC setting. METHODS: We retrospectively screened all patients with stage I-IV ASCC from January 2010 to June 2019. The records of patients who received definitive chemoradiation with cisplatin/capecitabine (XP) and IMRT were collected and analyzed. RESULTS: The first patient was treated with XP in 2017, so totally 11 patients were included in our study from January 2017 to June 2019. All patients have experienced clinical complete response (cCR). After a median follow-up of 30 months (range, 18-39 months), no patient had local recurrence or distant metastasis. Two-year colostomy-free survival (CFS) and two-year disease-free survival (DFS) were both 100%. The median overall survival (OS) has not reached. Grade 3 acute toxicities included leukopenia (1, 9.1%), neutropenia (2, 18.2%) and thrombocytopenia (2, 18.2%). No grade 4 acute adverse events occurred. CONCLUSION: In our study, cisplatin/capecitabine combined with IMRT was safe in ASCC patients, with favorable efficacy as an alternative, and is expected to be explored in study with larger sample.


Asunto(s)
Carcinoma de Células Escamosas , Radioterapia de Intensidad Modulada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Capecitabina/uso terapéutico , Carcinoma de Células Escamosas/terapia , Quimioradioterapia , Cisplatino , Fluorouracilo , Humanos , Recurrencia Local de Neoplasia , Estudios Retrospectivos
10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(1): 81-86, 2018 02 25.
Artículo en Zh | MEDLINE | ID: mdl-29745605

RESUMEN

The aim of this article is to study the regulatory feedback loop between ß-catenin and IQ motif containing GTPase activating protein 1 (IQGAP1), as well as the effect of this regulation loop in colon cancer cell proliferation. Western blot was used to detect the expression of IQGAP1 and ß-catenin after changing their expression respectively by transfection in SW1116 cells. CCK-8 cell proliferation assay was used to detect the effect of IQGAP1 involved in the proliferation of SW1116 cells promoted by ß-catenin. The results of Western blot indicated that ß-catenin could positively regulate IQGAP1, while IQGAP1 silencing could up-regulate ß-catenin, forming a negative feedback loop. The results of CCK-8 showed that IQGAP1 silencing inhibited ß-catenin-mediated proliferation in SW1116 cells. In conclusion, our research reveals a negative regulatory feedback loop between ß-catenin and IQGAP1 which has a remarkable effect on the proliferation ability of colon cancer cells.

11.
NPJ Biofilms Microbiomes ; 10(1): 5, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245554

RESUMEN

A high-fat diet (HFD) may be linked to an increased colorectal cancer (CRC) risk. Stem cell proliferation and adipokine release under inflammatory and obese conditions are the main factors regulating CRC progression. Furthermore, alterations in intestinal flora have been linked to tumorigenesis and tumour progression. However, whether a HFD can promote CRC occurrence by altering intestinal flora remains unclear. The objective of this study was to identify bacterial strains enriched by a HFD and investigate the association and mechanism by which a HFD and bacterial enrichment promote CRC occurrence and development. In this study, the intestinal microbiota of mice was assessed using 16S rRNA and metagenomic sequencing. Serum metabolites of HFD-fed mice were assessed using tandem liquid chromatography-mass spectrometry. CRC cell lines and organoids were co-cultured with Coriobacteriaceae to evaluate the effect of these bacteria on the CPT1A-ERK signalling pathway. We found that Coriobacteriaceae were enriched in the colons of HFD-fed mice. An endogenous Coriobacteriaceae strain, designated as Cori.ST1911, was successfully isolated and cultured from the stools of HFD-fed mice, and the tumorigenic potential of Cori.ST1911 in CRC was validated in several CRC mouse models. Furthermore, Cori.ST1911 increased acylcarnitine levels by activating CPT1A, demonstrating the involvement of the CPT1A-ERK axis. We also found that the endogenous Lactobacillus strain La.mu730 can interfere with Cori.ST1911 colonisation and restore gut barrier function. In conclusion, we identified a novel endogenous intestinal Coriobacteriaceae, Cori.ST1911, which might lead to a new gut microbiota intervention strategy for the prevention and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S/genética , Carcinogénesis , Microbioma Gastrointestinal/fisiología , Neoplasias Colorrectales/etiología
12.
Heliyon ; 9(6): e17295, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389061

RESUMEN

Sorafenib resistance is one of the main obstacles to the treatment of advanced hepatocellular carcinoma (HCC). Stress proteins TRIB3 and STC2 confer cell resistance to a variety of stresses, including hypoxia, nutritional deprivation, and other perturbations, which induce endoplasmic reticulum stress. However, the role of TRIB3 and STC2 in sorafenib sensitivity to HCC remains unclear. In this study, our results indicated that the common differentially expressed genes (DEGs) in sorafenib-treated HCC cells obtained from the NCBI-GEO database (Huh7 and Hep3B cells; GSE96796) included TRIB3, STC2, HOXD1, C2orf82, ADM2, RRM2, and UNC93A. The most significantly upregulated DEGs were TRIB3 and STC2, which were both stress protein genes. Bioinformatic analysis in NCBI public databases indicated that TRIB3 and STC2 were highly expressed in HCC tissues and closely associated with poor prognoses in HCC patients. Further investigation showed that inhibition of TRIB3 or STC2 with siRNA could enhance the anti-cancer effect of sorafenib in HCC cell lines. In conclusion, our study showed that stress proteins TRIB3 and STC2 are closely associated with sorafenib resistance in HCC. The combination of TRIB3 or STC2 inhibition and sorafenib may be a promising therapeutic strategy for HCC.

13.
Front Oncol ; 13: 1197502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409263

RESUMEN

Cholesterol esterification is often dysregulated in cancer. Sterol O-acyl-transferase 1 (SOAT1) plays an important role in maintaining cellular cholesterol homeostasis by catalyzing the formation of cholesterol esters from cholesterol and long-chain fatty acids in cells. Many studies have implicated that SOAT1 plays a vital role in cancer initiation and progression and is an attractive target for novel anticancer therapy. In this review, we provide an overview of the mechanism and regulation of SOAT1 in cancer and summarize the updates of anticancer therapy targeting SOAT1.

14.
Free Radic Biol Med ; 202: 110-120, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997100

RESUMEN

Dysfunction of the ubiquitin‒proteasome system can induce sustained endoplasmic reticulum stress (ERS) and subsequent cell death. However, malignant cells have evolved multiple mechanisms to evade sustained ERS. Therefore, identification of the mechanisms through which tumor cells develop resistance to ERS is important for the therapeutic exploitation of these cells for drug-resistant tumors. Herein, we found that proteasome inhibitors could induce ERS, activate ferroptosis signaling, and thereby induce the adaptive tolerance of tumor cells to ERS. Mechanistically, the activation of ferroptosis signaling was found to promote the formation and secretion of exosomes containing misfolded and unfolded proteins, which resulted in rescuing ERS and promoting tumor cell survival. The inhibition of ferroptosis signaling synergized with bortezomib, a clinically used proteasome inhibitor, to suppress the viability of hepatocellular carcinoma cells in vitro and in vivo. The present findings reveal that ERS resistance can be driven by an ERS-ferroptosis signaling-exosome pathway and have important clinical implications for intracellular signaling, ER homeostasis and drug-resistant cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ferroptosis/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Estrés del Retículo Endoplásmico/fisiología
15.
Int J Biol Sci ; 18(4): 1695-1705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280684

RESUMEN

Ferroptosis, a new form of programmed necrosis characterized by iron-dependent lethal accumulation of lipid hydroperoxides, is associated with many human diseases. Targeting amino acid (AA) availability can selectively suppress tumor growth and has been a promising therapeutic strategy for cancer therapy. Compelling studies have indicated that AA metabolism is also involved in ferroptosis, closely regulating its initiation and execution. This manuscript systematically summarizes the latest advances of AA metabolism in regulating ferroptosis and discusses the potential combination of therapeutic strategies that simultaneously target AA metabolism and ferroptosis in cancer to eliminate tumors or limit their invasiveness.


Asunto(s)
Ferroptosis , Neoplasias , Aminoácidos/uso terapéutico , Apoptosis , Humanos , Neoplasias/metabolismo
16.
Front Oncol ; 12: 938502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091156

RESUMEN

Cholesterol metabolism is often dysregulated in cancer. Squalene monooxygenase (SQLE) is the second rate-limiting enzyme involved in cholesterol synthesis. Since the discovery of SQLE dysregulation in cancer, compelling evidence has indicated that SQLE plays a vital role in cancer initiation and progression and is a promising therapeutic target for cancer treatment. In this review, we provide an overview of the role and regulation of SQLE in cancer and summarize the updates of antitumor therapy targeting SQLE.

17.
Cell Death Dis ; 13(7): 615, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840557

RESUMEN

Aggresome formation is a protective cellular response to counteract proteasome dysfunction by sequestering misfolded proteins and reducing proteotoxic stress. Autophagic degradation of the protein aggregates is considered to be a key compensating mechanism for balancing proteostasis. However, the precise role of autophagy in proteasome inhibition-induced aggresome biogenesis remains unclear. Herein, we demonstrate that in the early stage of proteasome inhibition, the maturation of the autophagosome is suppressed, which facilitates aggresome formation of misfolded proteins. Proteasome inhibition-induced phosphorylation of SQSTM1 T269/S272 inhibits its autophagic receptor activity and promotes aggresome formation of misfolded proteins. Inhibiting SQSTM1 T269/S272 phosphorylation using Doramapimod aggravates proteasome inhibitor-mediated cell damage and tumor suppression. Taken together, our data reveal a negative effect of autophagy on aggresome biogenesis and cell damage upon proteasome inhibition. Our study suggests a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas Ubiquitinadas , Autofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteínas Ubiquitinadas/metabolismo
18.
Tumori ; 107(6): NP24-NP27, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33345750

RESUMEN

BACKGROUND: Pancreatic acinar cell carcinoma (PACC) is a rare tumor, accounting for about 1% of all pancreatic exocrine cancers. Consensus on the management of metastatic PACC remains unclear. CASE PRESENTATION: Starting from April 2019, a patient first received chemotherapy with two cycles of gemcitabine and nab-paclitaxel and two cycles of SOX regimen. After progression of disease evaluated based on RECIST 1.1, toripalimab and SOX regimen was administered because of PD-L1-positive expression, high tumor mutation burden (TMB), and somatic FANCA deletion in the tumor. Both the primary and metastatic tumor mass shrank significantly after two courses. The patient exhibited sustained partial response for at least six courses with well-controlled toxic effects. Then the treatment had to be stopped for 2 months because of the coronavirus disease 2019 pandemic. Computed tomography scan in March 2020 showed disease progression. Time from initiating treatment to tumor progression on toripalimab and SOX regimen treatment took up to at least 8 months. CONCLUSIONS: We present the first case report where a PD-L1 positive, high TMB, and FANCA-deleted pancreatic acinar cell carcinoma was treated using chemotherapy combined with immunotherapy, in which the patient exhibited satisfactory response and tolerance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Células Acinares/tratamiento farmacológico , Inmunoterapia/métodos , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Anciano , Albúminas/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/inmunología , Carcinoma de Células Acinares/patología , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Humanos , Masculino , Paclitaxel/administración & dosificación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Gemcitabina , Neoplasias Pancreáticas
19.
Cell Death Discov ; 7(1): 38, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637695

RESUMEN

Intracellular free cholesterol can be converted to cholesteryl ester and stored as lipid droplets through SOAT1-mediated esterification. Compelling evidence implicate targeting SOAT1 as a promising therapeutic strategy for cancer management. Herein, we demonstrate how targeting SOAT1 promotes YAP expression by elevating cellular cholesterol content in colon cancer cells. Results revealed that cholesterol alleviates the inhibitory effect of LRP6 on the Wnt/PCP pathway by impeding the interaction of LRP6 with FZD7. Subsequently, FZD7-mediated PCP signaling directly elevated YAP expression by activating RhoA. Nystatin-mediated cholesterol sequestration significantly inhibited YAP expression under SOAT1 inhibition. Moreover, nystatin synergized with the SOAT1 inhibitor avasimibe in suppressing the viability of colon cancer cells in vitro and in vivo. The present study provides new mechanistic insights into the functions of cholesterol metabolism on growth signaling pathways and implicates a novel strategy for cholesterol metabolic-targeted treatment of colon cancers.

20.
Cell Death Discov ; 7(1): 125, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34052835

RESUMEN

Lipid homeostasis plays a fundamental role in the development of hepatocellular carcinoma (HCC). However, the mechanisms that regulate lipid homeostasis to avoid lipotoxicity in HCC remain elusive. Here, we found high-fat diet (HFD) improved the expression of sterol o-acyltransferase1 (SOAT1) and carnitine palmitoyltransferase 1A (CPT1A) in diethylnitrosamine-induced HCC. Bioinformatic analysis showed that SOAT1-mediated fatty acid storage and CPT1A-mediated fatty acids oxidation (FAO) formed a double-negative feedback loop in HCC. We verified that SOAT1 inhibition enhanced CPT1A protein, which shuttled the released fatty acids into the mitochondria for oxidation in vivo and in vitro. Besides, we further confirmed that CPT1A inhibition converted excess fatty acids into lipid drops by SOAT1 in vitro. Simultaneously targeting SOAT1 and CPT1A by the small-molecule inhibitors avasimibe and etomoxir had synergistic anticancer efficacy in HCC in vitro and in vivo. Our study provides new mechanistic insights into the regulation of lipid homeostasis and suggests the combination of avasimibe and etomoxir is a novel strategy for HCC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA