Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 711: 149920, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615574

RESUMEN

Tuberculosis (TB), a deadly infectious disease induced by Mycobacterium tuberculosis (Mtb), continues to be a global public health issue that kill millions of patents every year. Despite significant efforts have been paid to identify effective TB treatments, the emergence of drug-resistant strains of the disease and the presence of comorbidities in TB patients urges us to explore the detailed mechanisms involved in TB immunity and develop more effective innovative anti-TB strategies. HIF-1α, a protein involved in regulating cellular immune responses during TB infection, has been highlighted as a promising target for the development of novel strategies for TB treatment due to its critical roles in anti-TB host immunity. This review provides a summary of current research progress on the roles of HIF-1α in TB infection, highlighting its importance in regulating the host immune response upon Mtb infection and summarizing the influences and mechanisms of HIF-1α on anti-TB immunological responses of host cells. This review also discusses the various challenges associated with developing HIF-1α as a target for anti-TB therapies, including ensuring specificity and avoiding off-target effects on normal cell function, determining the regulation and expression of HIF-1α in TB patients, and developing drugs that can inhibit HIF-1α. More deep understanding of the molecular mechanisms involved in HIF-1α signaling, its impact on TB host status, and systematic animal testing and clinical trials may benefit the optimization of HIF-1α as a novel therapeutic target for TB.


Asunto(s)
Antituberculosos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Mycobacterium tuberculosis , Transducción de Señal , Tuberculosis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/inmunología , Transducción de Señal/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología , Animales , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Terapia Molecular Dirigida/métodos
2.
Pharmacol Res ; 208: 107379, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218421

RESUMEN

Tuberculosis (TB), a deadly disease caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by in vitro macrophages and ex vivo macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.


Asunto(s)
Antituberculosos , Grafito , Macrófagos , Mycobacterium tuberculosis , Rifampin , Tuberculosis , Grafito/química , Animales , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Tuberculosis/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Rifampin/farmacología , Rifampin/administración & dosificación , Rifampin/uso terapéutico , Ratones , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Antituberculosos/administración & dosificación , Autofagia/efectos de los fármacos , Macaca , Nanopartículas , Células RAW 264.7
3.
Molecules ; 29(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474476

RESUMEN

Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Serotonina , Estructura Molecular , Microscopía por Crioelectrón , Antidepresivos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
4.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817142

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Macrófagos , Tuberculosis/tratamiento farmacológico , Rifampin/farmacología , Hierro
5.
Curr Microbiol ; 80(5): 171, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024713

RESUMEN

Dengue remains a public health issue worldwide. Similar to chronic infectious diseases, stimulation of cytokine production is not enough to drive immune effector cells for effective virus clearance. One possible mechanism is the virus induces a large number of negative stimulatory cytokines inhibiting immune response. Interleukin 37 (IL-37) plays a crucial regulatory role in infection and immunity, inhibits innate and adaptive immunity as an anti-inflammatory cytokine by inhibiting proinflammatory mediators and pathways. To date, there are few studies reporting correlations between dengue fever (DF) and IL-37. In this study we found that the serum IL-37b and IL-37b-producing monocytes in patients were significantly increased in DF patients. A majority of the IL-37b produced by DF patients was produced by monocytes, not lymphocytes. Increased levels of IL-6, IL-10, and IFN-α were also found in DF patients. However, we failed to detect IL-1ß, IL-17A and TNF-α in plasma, because of off-target. In our study, there was no relation between IL-6, IL-10, and IFN-α expressions and IL-37b in serum (P > 0.05). The IL-37b-producing monocytes were negatively correlated with the level of IFN-α in serum and platelet count, and positively correlated with lymphocytes percentage (P < 0.05, respectively). Additionally, serum DENV nonstructural protein 1 levels were positively correlated with monocytes percentages (P < 0.05). Our data represents findings for IL-37b expression and its potential mechanisms in DF patients' immune response.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Interleucina-10 , Virus del Dengue/fisiología , Interleucina-6 , Carga Viral , Citocinas
6.
J Nanobiotechnology ; 20(1): 36, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033108

RESUMEN

Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a top killer among infectious diseases. While Bacillus Calmette-Guerin (BCG) is the sole TB vaccine, the clumped-clustered features of BCG in intradermal immunization appear to limit both the BCG protection efficacy and the BCG vaccination safety. We hypothesize that engineering of clumped-clustered BCG into nanoscale particles would improve safety and also facilitate the antigen-presenting-cell (APC)'s uptake and the following processing/presentation for better anti-TB protective immunity. Here, we engineered BCG protoplasts into nanoscale membraned BCG particles, termed as "BCG-Nanocage" to enhance the anti-TB vaccination efficiency and safety. BCG-Nanocage could readily be ingested/taken by APC macrophages selectively; BCG-Nanocage-ingested macrophages exhibited better viability and developed similar antimicrobial responses with BCG-infected macrophages. BCG-Nanocage, like live BCG bacilli, exhibited the robust capability to activate and expand innate-like T effector cell populations of Vγ2+ T, CD4+ T and CD8+ T cells of rhesus macaques in the ex vivo PBMC culture. BCG-Nanocage immunization of rhesus macaques elicited similar or stronger memory-like immune responses of Vγ2Vδ2 T cells, as well as Vγ2Vδ2 T and CD4+/CD8+ T effectors compared to live BCG vaccination. BCG-Nanocage- immunized macaques developed rapidly-sustained pulmonary responses of Vγ2Vδ2 T cells upon Mtb challenge. Furthermore, BCG- and BCG-Nanocage- immunized macaques, but not saline controls, exhibited undetectable Mtb infection loads or TB lesions in the Mtb-challenged lung lobe and hilar lymph node at endpoint after challenge. Thus, the current study well justifies a large pre-clinical investigation to assess BCG-Nanocage for safe and efficacious anti-TB vaccination, which is expected to further develop novel vaccines or adjuvants.


Asunto(s)
Vacuna BCG , Linfocitos T CD8-positivos/inmunología , Mycobacterium tuberculosis/inmunología , Nanoestructuras/química , Tuberculosis/inmunología , Animales , Vacuna BCG/química , Vacuna BCG/inmunología , Células Cultivadas , Femenino , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Macaca mulatta , Masculino
7.
Anal Bioanal Chem ; 413(30): 7401-7410, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34673992

RESUMEN

The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.


Asunto(s)
Aprendizaje Profundo , Farmacorresistencia Bacteriana , Espectrometría Raman/métodos , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/clasificación , Bacterias/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Especificidad de la Especie , Infecciones Urinarias/tratamiento farmacológico
8.
Mol Carcinog ; 59(4): 447-461, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32096299

RESUMEN

Effective therapeutic targets for triple-negative breast cancer (TNBC), a special type of breast cancer (BC) with rapid metastasis and poor prognosis, are lacking, especially for patients with chemotherapy resistance. Decitabine (DCA) is a Food and Drug Administration-approved DNA methyltransferase inhibitor that has been proven effective for the treatment of tumors. However, its antitumor effect in cancer cells is limited by multidrug resistance. Cancer stem cells (CSCs), which are thought to act as seeds during tumor formation, regulate tumorigenesis, metastasis, and drug resistance through complex signaling. Our previous study found that miR-155 is upregulated in BC, but whether and how miR-155 regulates DCA resistance is unclear. In this study, we demonstrated that miR-155 was upregulated in CD24- CD44+ BC stem cells (BCSCs). In addition, the overexpression of miR-155 increased the number of CD24- CD44+ CSCs, DCA resistance and tumor clone formation in MDA-231 and BT-549 BC cells, and knockdown of miR-155 inhibited DCA resistance and stemness in BCSCs in vitro. Moreover, miR-155 induced stemness and DCA resistance by inhibiting the direct target gene tetraspanin-5 (TSPAN5). We further confirmed that overexpression of TSPAN5 abrogated the effect of miR-155 in promoting stemness and DCA resistance in BC cells. Our data show that miR-155 increases stemness and DCA resistance in BC cells by targeting TSPAN5. These data provide a therapeutic strategy and mechanistic basis for future possible clinical applications targeting the miR-155/TSPAN5 signaling axis in the treatment of TNBC.


Asunto(s)
Decitabina/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Tetraspaninas/genética , Neoplasias de la Mama Triple Negativas/genética , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tetraspaninas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
9.
J Clin Lab Anal ; 34(5): e23154, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31837045

RESUMEN

BACKGROUND: The association between vitamin D-binding protein (VDBP) and 25-hydroxyvitamin D (25 (OH)D) with colorectal cancer (CRC) is still ambiguous. This study was to further investigate the relationship between serum VDBP, 25 (OH)D levels and the clinical and pathological features of patients with CRC. METHODS: Enzyme-linked immunosorbent assay (ELISA) and chemiluminescence immunoassay were used to analyze the VDBP and 25(OH)D concentrations in serum. Pearson's correlation analysis was applied to evaluate the association between serum VDBP and 25(OH)D levels in CRC. Conditional logistic regression was performed to analyze the prediction value of serum VDBP or 25(OH)D as a risk factor for CRC. RESULTS: The serological levels of 25(OH)D in patients were significantly lower than in healthy individuals, while VDBP levels were significantly higher than in healthy controls. The serum VDBP in pre-operative was significantly lower than in post-operative samples, while the serum 25(OH)D from pre-operative patients was significantly higher than post-operative patients. Patients with tumors with higher stage and increased lymph node involvement had lower serum post-operative VDBP levels. In addition, our results showed that the pre-operative VDBP level is a risk factor of CRC. CONCLUSIONS: The levels of serum 25(OH)D and VDBP were both associated with CRC. Thus, serum 25(OH)D and VDBP levels might be of value in evaluating the pathogenesis and risk of CRC in the future. Moreover, serum VDBP or 25(OH)D levels were associated with patient's clinical and pathological features providing data for risk and prognostic prediction.


Asunto(s)
Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/cirugía , Proteína de Unión a Vitamina D/sangre , Vitamina D/análogos & derivados , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Neoplasias Colorrectales/patología , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Periodo Preoperatorio , Factores de Riesgo , Vitamina D/sangre
10.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28356537

RESUMEN

Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 107 to 109 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 108 or 109 TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines.IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 107 to 109 TCID50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines.


Asunto(s)
Macaca , Poliomielitis/patología , Poliovirus/crecimiento & desarrollo , Poliovirus/patogenicidad , Estructuras Animales/virología , Animales , Modelos Animales de Enfermedad , Células Epiteliales/virología , Heces/virología , Leucocitos/virología , Nasofaringe/virología , Esparcimiento de Virus
11.
Cell Immunol ; 311: 28-35, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27717503

RESUMEN

Despite past extensive studies on B and T lymphocyte attenuator (BTLA)-mediated negative regulation of T cell activation, the role of BTLA in antigen presenting cells (APCs) in patients with active pulmonary tuberculosis (ATB) remains poorly understood. Here, we demonstrate that BTLA expression on CD11c APCs increased in patients with ATB. Particularly, BTLA expression in CD11c APCs was likely associated with the attenuated stimulatory capacity on T cells (especially CD8+ T cell) proliferation. BTLA-expressing CD11c APCs showed lower antigen uptake capacity, lower CD86 expression, higher HLA-DR expression, and enhanced IL-6 secretion, compared to counterpart BTLA negative CD11c APCs in healthy controls (HC). Interestingly, BTLA-expressing CD11c APCs from ATB patients displayed lower expression of HLA-DR and less IL-6 secretion, but higher expression of CD86 than those from HC volunteers. Mixed lymphocyte reaction suggests that BTLA expression is likely associated with positive rather than conventional negative regulation of CD11c APCs stimulatory capacity. This role is impaired in ATB patients manifested by low expression of HLA-DR and low production of IL-6. This previous unappreciated role for BTLA may have implications in the prevention and treatment of patients with ATB.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Adolescente , Adulto , Antígeno B7-2/metabolismo , Antígeno CD11c/metabolismo , Proliferación Celular , Células Cultivadas , Femenino , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-6/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Receptores Inmunológicos/metabolismo , Linfocitos T/microbiología , Adulto Joven
12.
Mediators Inflamm ; 2017: 5706152, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29056830

RESUMEN

Colitis is a major form of inflammatory bowel disease which involved mucosal immune dysfunction. Aloperine is an alkaloid isolated from the shrub Sophora alopecuroides L. and has been recognized as an effective treatment for inflammatory and allergic diseases. The present study aimed to examine the molecular mechanisms underlying aloperine-mediated colitis protection. We found that aloperine treatment improved colitis induced by dextran sodium sulfate (DSS) based on body weight, disease activity index, colonic length, and spleen index. Aloperine also effectively attenuated DSS-induced intestinal inflammation based on the pathological score and myeloperoxidase expression and activity in colon tissues. In addition, aloperine regulated T-cell proportions and promoted Foxp3 expression in the spleens and mesenteric lymph nodes of DSS-induced colitis mice and in the spleens of the Foxp3GFP mice. Aloperine inhibited Jurkat and mouse naïve T-cell apoptosis. Furthermore, aloperine inhibited PI3K/Akt/mTOR signaling and upregulated PP2A expression in the DSS-induced colitis mice and in Jurkat cells, but LB-100 (PP2A inhibitor) resulted in an elevated Akt activity in Jurkat cells, activated T-cells, and human splenic mononuclear cells. Aloperine inhibited T-cell and lymphocyte proliferation, but LB-100 reverse these effects. In conclusion, aloperine regulates inflammatory responses in colitis by inhibiting the PI3K/Akt/mTOR signaling in a PP2A-dependent manner.


Asunto(s)
Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Enfermedades Inflamatorias del Intestino/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Piperidinas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Células Jurkat , Ratones , Quinolizidinas , Transducción de Señal/efectos de los fármacos
13.
Mol Med ; 21(1): 912-923, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26552059

RESUMEN

Aloperine is a quinolizidine alkaloid extracted from the leaves of Sophora plants. It has been recognized with the potential to treat inflammatory and allergic diseases as well as tumors. In this report, we demonstrate that pretreatment with aloperine provided protection for mice against ischemia-reperfusion (IR)-induced acute renal injury as manifested by the attenuated inflammatory infiltration, reduced tubular apoptosis, and well-preserved renal function. Mechanistic studies revealed that aloperine selectively repressed IL-1ß and IFN-γ expression by regulating PI3K/Akt/mTOR signaling and NF-κB transcriptional activity. However, aloperine did not show a perceptible impact on IL-6 and TGF-ß expression and the related Jak2/Stat3 signaling. It was also noted that aloperine regulates AP-1 activity, through which it not only enhances SOD expression to increase reactive oxygen species (ROS) detoxification but also promotes the expression of antiapoptotic Bcl-2, thereby preventing tubular cells from IR-induced apoptosis. Collectively, our data suggest that administration of aloperine prior to IR insults, such as renal transplantation, could be a viable approach to prevent IR-induced injuries.

14.
Mediators Inflamm ; 2016: 8026494, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27006530

RESUMEN

Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP) dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.


Asunto(s)
Carboplatino/farmacología , Neoplasias Colorrectales/metabolismo , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ciclina D1/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Transducción de Señal/efectos de los fármacos
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 46(6): 842-5, 2015 Nov.
Artículo en Zh | MEDLINE | ID: mdl-26867318

RESUMEN

OBJECTIVE: To explore the protective effect and its mechanism of B7-H4 on the immuno hepatic injury. METHODS: The immuno hepatic injury was induced by Concanavalin A (Con A). Sixty KM mice were randomly divided into 4 groups with 15 mice in each group: Group A (saline), Group B (pcDNA3.1-mB7-H4-Fc), Group C (pcDNA3.1), Group D (Con A). One day before the injection of Con A (25 mg/kg), the mice in Group B and Group C received the injection of 100 pg pcDNA3.1-mB7-H4-Fc and 100 microg pcDNA3.1 respectively. The blood samples were collected at 12 h, 24 h and 48 h after Con A injection, the levels of ALT, AST, IL-4 and IFN-gamma were measured. Five mice in each group were sacrificed at the above 3 time points, the liver tissue were harvested for histopathological detection. RESULTS: After Con A injection, the level of ALT in Group B, C, and D were higher than that in Group A. The level of ALT in Group B was lower than that in Group C and D. The significant difference was found between Group B and Group C. The hepatic injury of Group B was less serious than that of Group C and D. CONCLUSION: B7-H4 may have protection on the immune injury of liver induced by Con A.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Concanavalina A/efectos adversos , Inhibidor 1 de la Activación de Células T con Dominio V-Set/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Ratones , Sustancias Protectoras/farmacología
16.
J Autoimmun ; 53: 95-104, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24934598

RESUMEN

Unlike genetic alterations, epigenetic modifications are reversible and amenable to pharmacological interventions, which make them appealing targets for clinical therapy. However, little is known about epigenetic regulation in experimental autoimmune encephalomyelitis (EAE). Here we demonstrated that methyl-CpG-binding domain protein 2 (MBD2), an epigenetic regulator, controls autoimmunity and EAE through T-bet/Hlx. Tbx21 and Hlx underwent a DNA methylation turnover upon polarizations and a unique methylation pattern was essential for TH17 development. Loss of Mbd2 resulted in a defect for reading the information encoded by this methylation turnover, which disrupted the homeostasis of T-bet/Hlx axis and suppressed TH17 differentiation. DNA demethylation induced similar effect on helper T cell differentiation. Therefore, Mbd2(-/-) mice were completely protected from EAE. Pathogenic splenocytes isolated from wild-type mice challenged with MOG35-55 could adoptively transfer disease to Mbd2(-/-) mice. In addition, Mbd2(-/-) mice reconstituted with unstimulated wild-type splenocytes developed EAE as wild-type mice did. These data would provide novel insights into epigenetic regulation of EAE.


Asunto(s)
Diferenciación Celular/inmunología , Proteínas de Unión al ADN/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Proteínas de Homeodominio/inmunología , Proteínas de Dominio T Box/inmunología , Células Th17/inmunología , Factores de Transcripción/inmunología , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/toxicidad , Proteínas de Dominio T Box/genética , Células Th17/patología , Factores de Transcripción/genética
17.
Opt Express ; 22(21): 25895-908, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401621

RESUMEN

This study aims to detect colorectal cancer with near-infrared Raman spectroscopy and feature selection techniques. A total of 306 Raman spectra of colorectal cancer tissues and normal tissues are acquired from 44 colorectal cancer patients. Five diagnostically important Raman bands in the regions of 815-830, 935-945, 1131-1141, 1447-1457 and 1665-1675 cm(-1) related to proteins, nucleic acids and lipids of tissues are identified with the ant colony optimization (ACO) and support vector machine (SVM). The diagnostic models built with the identified Raman bands provide a diagnostic accuracy of 93.2% for identifying colorectal cancer from normal Raman spectroscopy. The study demonstrates that the Raman spectroscopy associated with ACO-SVM diagnostic algorithms has great potential to characterize and diagnose colorectal cancer.


Asunto(s)
Algoritmos , Neoplasias Colorrectales/diagnóstico , Espectrometría Raman/métodos , Adenocarcinoma/diagnóstico , Adenocarcinoma/patología , Neoplasias Colorrectales/patología , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Curva ROC , Máquina de Vectores de Soporte
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 257-266, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38512036

RESUMEN

Objective To prepare anti-human B7 homolog 4 (B7-H4) egg yolk immunoglobulins (IgY) polyclonal antibody and establish a double-antibody sandwich ELISA for the detection of soluble B7-H4 (sB7-H4) protein in human serum. Methods Bioinformatics was used to screen specific B cell epitope peptides of human sB7-H4. New Hyland Grey laying hens were immunized with these peptides, and the eggs from the immunized hens were collected to purify chicken anti-human B7-H4 IgY antibody. The purity, concentration and titer of the antibody were detected, and its specificity and function of the antibodies were verified by using ELISA, Western blot analysis and flow cytometry, respectively. A double-antibody sandwich ELISA was established to detect sB7-H4 in clinical samples by using the IgY antibody. Comparative detection was performed using a commercialized ELISA kit on the same set of clinical samples. Results The chicken anti-human B7-H4 IgY antibodies were successfully prepared and proven to be highly specific for the human B7-H4 protein. The ELISA established with the IgY polyclonal antibody detected significantly higher levels of soluble B7-H4 in the serum of patients with ovarian cancer and benign ovarian tumors compared to healthy controls. These results were consistent with the detection results obtained using a commercialized ELISA kit. However, the ELISA with IgY antibody exhibited higher sensitivity than the commercialized kit. Conclusion The chicken polyclonal antibody against human B7-H4 IgY is successfully prepared, and a double-antibody sandwich ELISA suitable for detecting sB7-H4 protein in human serum is established.


Asunto(s)
Pollos , Inmunoglobulinas , Neoplasias Ováricas , Humanos , Animales , Femenino , Anticuerpos , Ensayo de Inmunoadsorción Enzimática , Péptidos
19.
Curr Med Chem ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38231073

RESUMEN

Iron, copper, and zinc play integral roles in the battle against Mycobacterium tuberculosis (Mtb) infection; however, they are often trapped between nutrients and toxins, posing a significant challenge to macrophages and Mtb to utilize them. Due to this two-sided effect, macrophages and Mtb strictly regulate metal uptake, storage, and excretion. This review discusses the balanced regulation of iron, copper, and zinc in macrophages and Mtb during infection, focusing on the intracellular metal regulatory system. Macrophages typically use the two-sided effect of metals to limit Mtb access to nutrients or poison them. Mtb has developed a metal metabolism regulatory mechanism compatible with the nutritional immune strategy. This includes the mediation of relevant metalloproteins and metalloenzymes to maintain the multimetal balance. This review also explored the regulation of metal metabolism homeostasis in macrophages resistant to Mtb infection, providing a theoretical foundation for identifying potential clinical targets for Mtb infection, developing metalloid anti-tuberculosis drugs, and understanding the immune mechanisms against intracellular Mtb infection.

20.
J Inflamm Res ; 17: 1397-1411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476473

RESUMEN

Purpose: To investigate the correlation between M1/M2 macrophages (M1/M2 Mφ) and cell death mode under Mycobacterium tuberculosis (Mtb) infection. Methods: Raw gene expression profiles were collected from the Gene Expression Omnibus (GEO) database. Genes related to different cell death modes were collected from the KEGG, FerrDb and GSEA databases. The differentially expressed genes (DEGs) of the gene expression profiles were identified using the limma package in R. The intersection genes of M1/M2 Mφ with different cell death modes were obtained by the VennDiagram package. Hub genes were obtained by constructing the protein-protein interactions (PPI) network and Receiver Operating Characteristic (ROC) curve analysis. The expression of cell death modes marker genes and Hub genes were verified by Western Blot and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results: Bioinformatics analysis was performed to screen Hub genes of Mtb-infected M1 Mφ and different cell death modes, naming NFKB1, TNF, CFLAR, TBK1, IL6, RELA, SOCS1, AIM2; Hub genes of Mtb-infected M2 Mφ and different cell death modes, naming TNF, BIRC3, MAP1LC3C, DEPTOR, UVRAG, SOCS1. Combined with experimental validation, M1 Mφ under Mtb infection showed higher expression of death (including apoptosis, autophagy, ferroptosis, and pyroptosis) genes compared to M2 Mφ and genes such as NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2, BIRC3, DEPTOR show differential expression. Conclusion: NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2 in Mtb-infected M1 Mφ, and TNF, BIRC3, DEPTOR in Mtb-infected M2 Mφ might be used as potential diagnostic targets for TB. At early stage of Mtb infection, apoptosis, autophagy, ferroptosis, and pyroptosis occurred more significantly in M1 Mφ than that in M2 Mφ, which may contribute to the transition of Mtb-infected Mφ from M1-dominant to M2-dominant and contribute to the immune escape mechanisms of Mtb.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA