Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Chem ; 96(10): 4275-4281, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38409670

RESUMEN

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.

2.
Small ; 20(25): e2309575, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279627

RESUMEN

Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.

3.
Angew Chem Int Ed Engl ; 60(39): 21512-21520, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34309972

RESUMEN

One of the major challenges regarding the sulfur cathode of Li-S batteries is to achieve high sulfur loading, fast Li ions transfer, and the suppression of lithium polysulfides (LiPSs) shuttling. This issue can be solved by the development of molybdenum carbide decorated N-doped carbon hierarchical double-shelled hollow spheres (Mo2 C/C HDS-HSs). The mesoporous thick inner shell and the central void of the HDS-HSs achieve high sulfur loading, facilitate the ion/electrolyte penetration, and accelerate charge transfer. The microporous thin outer shell suppresses LiPSs shuttling and reduces the charge/mass diffusion distance. The double-shelled hollow structure accommodates the volume expansion during lithiation. Furthermore, Mo2 C/C composition renders the HDS-HSs cathode with improved conductivity, enhanced affinity to LiPSs, and accelerated kinetics of LiPSs conversion. The structural and compositional advantages render the Mo2 C/C/S HDS-HSs electrode with high specific capacity, excellent rate capability, and ultra-long cycling stability in the composed Li-S batteries.

4.
Langmuir ; 36(31): 9114-9123, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32672971

RESUMEN

Conducting polymer nanocoatings render plastics to possess interesting optical, chemical, and electrical properties. It nevertheless remains technically challenging to deposit uniform conducting polymer nanocoatings on ambient plastic substrates ascribed to the inert and varied chemical properties of plastics and the notorious processability of conducting polymers. Previous studies have made progress in delivering various conducting polymer thin films via oxidative chemical vapor deposition. Herein, we develop a solution-based approach to polyaniline (PANI) and PEGylated PANI nanocoatings on multiple engineering plastics followed by evaluating their antifouling performance. The procedure relies on the formation of uniform, lyotropic V2O5·nH2O thin films on plastics assisted by a surfactant-sodium N-lauroylsarcosinate. Next, in situ, oxidative polymerization causes the formation of nanofibrous PANI nanocoatings. Finally, interfacial functionalization leads to PEGylated PANI nanocoatings, and the steric nanolayer effectively repels the adsorption of bovine serum albumin and the attachment of the bacterium Pseudoalteromonas sp. on the surface. It is worth noting that the antifouling properties rely mainly on the presence of PEGylated PANI nanocoatings, irrespective of the type of plastic substrates underneath. The current study therefore opens an avenue for the solution-based delivery of conducting polymer-based, functional nanocoatings on hydrophobic substrates in a controllable manner with the availability of further modification.

5.
Angew Chem Int Ed Engl ; 59(47): 21106-21113, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32767438

RESUMEN

Water electrolysis offers a promising green technology to tackle the global energy and environmental crisis, but its efficiency is greatly limited by the sluggish reaction kinetics of both the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). In this work, by growing amorphous multi-transition-metal (cobalt and iron) oxide on two-dimensional (2D) black phosphorus (BP), we develop a bifunctional electrocatalyst (CoFeO@BP), which is able to efficiently catalyze both HER and OER. The overpotentials for the hybrid CoFeO@BP catalyst to reach a current density of 10 mA cm-2 in 1 m KOH are 88 and 266 mV for HER and OER, respectively. Based on a series of ex-situ and in situ investigations, the excellent catalytic performance of CoFeO@BP is found to result from the adaptive surface structure under reduction and oxidation potentials. CoFeO@BP can be transformed to CoFe phosphide under reduction potential, in situ generating the real active catalyst for HER.

6.
Small ; 15(11): e1805084, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30690886

RESUMEN

Due to the natural biodegradability and biocompatibility, silk fibroin (SF) is one of the ideal platforms for on-skin and implantable electronic devices. However, the development of SF-based electronics is still at a preliminary stage due to the SF film intrinsic brittleness as well as the solubility in water, which prevent the fabrication of SF-based electronics through traditional techniques. In this article, a flexible and stretchable silver nanofibers (Ag NFs)/SF based electrode is synthesized through water-free procedures, which demonstrates outstanding performance, i.e., low sheet resistance (10.5 Ω sq-1 ), high transmittance (>90%), excellent stability even after bending cycles >2200 times, and good extensibility (>60% stretching). In addition, on the basis of such advanced (Ag NFs)/SF electrode, a flexible and tactile sensor is further fabricated, which can simultaneously detect pressure and strain signals with a large monitoring window (35 Pa-700 kPa). Besides, this sensor is air-permeable and inflammation-free, so that it can be directly laminated onto human skins for long-term health monitoring. Considering the biodegradable and skin-comfortable features, this sensor may become promising to find potential applications in on-skin or implantable health-monitoring devices.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles , Fibroínas/química , Movimiento (Física) , Piel Artificial , Dispositivos Electrónicos Vestibles , Humanos , Nanofibras/ultraestructura , Plata/química , Piel
7.
Analyst ; 141(12): 3925, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27082242

RESUMEN

Correction for 'Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces' by Bao-Ying Wen et al., Analyst, 2016, DOI: 10.1039/c6an00180g.

8.
Analyst ; 141(12): 3731-6, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27001527

RESUMEN

For the first time, we used the electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) technique to in situ characterize the adsorption behaviour of four DNA bases (adenine, guanine, thymine, and cytosine) on atomically flat Au(111) electrode surfaces. The spectroscopic results of the various molecules reveal similar features, such as the adsorption-induced reconstruction of the Au(111) surface and the drastic Raman intensity reduction of the ring breathing modes after the lifting reconstruction. As a preliminary study of the photo-induced charge transfer (PICT) mechanism, the in situ spectroscopic results obtained on single crystal surfaces are excellently illustrated with electrochemical data.


Asunto(s)
ADN/química , Oro , Nanopartículas , Espectrometría Raman , Adsorción , Electrodos
9.
Phys Chem Chem Phys ; 17(48): 32425-35, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26588791

RESUMEN

Molybdenum disulfide (MoS2) nanostructures have received considerable research attention due to their outstanding physical and chemical properties. Recently, a form of MoS2 ring structure exhibiting unique transport properties has been experimentally identified. Herein, we present the first report describing direct molecular dynamics (MD) simulations of structural instability and mechanical properties of hypothetical MoS2 nanotube (NT) toroidal nanostructures. Nanorings with small diameter MoS2 NTs retain their circular shape because of the higher bending stability of NTs, while for those with large diameter MoS2 NTs buckling/kinking and displacive phase transformations appear to effectively reduce bending stress as a mechanism for stabilizing the nanorings. However, the nanorings which have to polygonize maintain a circular shape as thick multi-walled inner nanorings are presented. Furthermore, mechanical responses of various nanoweaves (nanochains, nanomailles, and nanochainmailles) by linking nanorings together are also studied. The results show that Young's modulus, stretchability and tensile strength of such nanoweaves depend not only on the helicity of MoS2 NTs but also on the woven pattern. For example, nanostructures with 4-in-1 weaves of nanorings exhibit much higher tensile strength and stiffness but lower extensibility than those with 2-in-1 weaves. The finding suggests that MoS2 NT nanorings and their woven hierarchical structures may be used in the development of new flexible, light-weight electromechanical and optoelectronic nanodevices.

10.
ChemSusChem ; : e202400339, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38440923

RESUMEN

The pursuit of efficient host materials to address the sluggish redox kinetics of sulfur species has been a longstanding challenge in advancing the practical application of lithium-sulfur batteries. In this study, amorphous carbon layer loaded with ultrafine CoP nanoparticles prepared by a one-step in situ carbonization/phosphating method to enhance the inhibition of 2D black phosphorus (BP) on LiPSs shuttle. The carbon coating layer facilitates accelerated electron/ion transport, enabling the active involvement of BP in the conversion of soluble lithium polysulfides (LiPSs). Concurrently, the ultra-fine CoP nanoparticles enhance the chemical anchoring ability and introduce additional catalytic sites. As a result, S@BP@C-CoP electrodes demonstrate exemplary cycling stability (with a minimal capacity decay of 0.054 % over 500 cycles at 1 C) and superior rate performance (607.1 mAh g-1 at 5 C). Moreover, at a sulfur loading of 5.5 mg cm-2, the electrode maintains an impressive reversible areal capacity of 5.45 mAh cm-2 after 50 cycles at 0.1 C. This research establishes a promising approach, leveraging black phosphorus-based materials, for developing high-efficiency Li-S batteries.

11.
Sci Adv ; 10(25): eadn2707, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896618

RESUMEN

Nanoconfined catalysts enhance stabilization of reaction intermediates, facilitate electron transfer, and safeguard active centers, leading to superior electrocatalytic activity, particularly in CO2 reduction reactions (CO2RR). Despite their effectiveness, crafting nanoconfined catalysts is challenging due to unclear formation mechanisms. In this study, we introduce an electrochemical method to grow Pd clusters within the interlayers of two-dimensional black phosphorus, creating Pd cluster-intercalated black phosphorus (Pd-i-BP) as an electrocatalyst. Using in situ electrochemical liquid phase transmission electron microscopy (EC-TEM), we revealed the synthesis mechanism of Pd-i-BP, involving electrochemically driven Pd ion intercalation followed by reduction within the BP layers. The Pd-i-BP electrocatalyst exhibits exemplary CO2-to-formate conversion, achieving 90% Faradaic efficiency for formate production, owing to its distinct nanoconfined structure that stabilizes intermediates and enhances electron transfer. Density functional theory (DFT) calculations underscore the structural benefits for enhancing intermediate adsorption and catalyzing the reaction. Our insights deepen understanding of nanoconfined material synthesis, promising advanced, high-efficiency catalysts.

12.
J Colloid Interface Sci ; 660: 916-922, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280284

RESUMEN

Intermetallic compounds are emerging as promising oxygen reduction reaction (ORR) catalysts for fuel cells due to their typically higher activity and durability compared to disordered alloys. However, the preparation of intermetallic catalysts often requires high-temperature annealing, which unfortunately leads to adverse sintering of the metal nanoparticles. Herein, we develop a scalable site-selective sulfur anchoring strategy that effectively suppresses alloy sintering, ensuring the formation of efficient intermetallic electrocatalysts with small sizes and high ordering degrees. The alloy-support interactions are precisely modulated by selectively modifying the alloy-support interfaces with oxidized sulfur species, thus simultaneously blocking both the nanoparticle migration and Oswald ripening pathways for sintering. Using this strategy, sub-5 nm PtCo intermetallic electrocatalysts enclosed by two atomic layers of Pt shells have been successfully prepared even at a metal loading higher than 30 wt%. The intermetallic catalysts exhibit excellent ORR performances in both rotating disk electrode and membrane electrode assembly conditions with a mass activity of 1.28 A mgPt-1 at 0.9 V (vs. RHE) and a power density of 1.0 W cm-2 at a current density of 1.5 A cm-2. The improved performances result from the enhanced Pt-Co electronic interactions and compressive surface strain generated by the highly ordering structure, while the atomic Pt shells prevent the dissolution of Co under highly acidic conditions. This work provides new insights to inhibit the sintering of nanoalloys and would promote the scalable synthesis and applications of platinum-based intermetallic catalysts.

13.
Nanoscale ; 14(28): 10060-10066, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35791869

RESUMEN

Anisotropic assembly of nanomaterials into hollow structures is an attractive technique in biomedicine and biosensing. Commonly used polymer materials are easy to assemble yet it is hard to form anisotropic morphologies. Here in this work, we successfully prepared a novel gold nanocapsule with an anisotropic ellipsoidal shape and cavity structure by the self-assembly of ultrathin Au nanowires. The assembly mechanism is further studied by tuning the assembly conditions such as nanowire concentration, solvent composition, and temperature. It is found that the controlling forces of the nanowire assembly process are mainly the symmetric interfacial tension and the asymmetric nanowire deformation potential, which contribute together to result in anisotropic nanocapsules. Finally, the obtained Au nanocapsules were used as nanocarriers to load pyrene as a model drug, showing great drug loading ability and pH-responsive drug release behavior. We believe that this unique anisotropic assembly product will bring new insights into nanostructure design and soft matter research.

14.
Light Sci Appl ; 11(1): 235, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882840

RESUMEN

The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics. Here, we demonstrated the vertical distribution of the light-matter interactions at ~1 nm spatial resolution by coupling A excitons of MoS2 and gap-mode plasmonic nanocavities. Moreover, we observed the significant photoluminescence (PL) enhancement factor reaching up to 2800 times, which is attributed to the Purcell effect and large local density of states in gap-mode plasmonic nanocavities. Meanwhile, the theoretical calculations are well reproduced and support the experimental results.

15.
Adv Mater ; 33(50): e2005924, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34050548

RESUMEN

2D materials have experienced rapid and explosive development in the past decades. Among them, black phosphorus (BP) is one of the most promising materials on account of its thickness-dependent bandgap, high charge-carrier mobility, in-plane anisotropic structure, and excellent biocompatibility, as well as the broad applications brought by the properties. In view of the electron configuration, the most unique feature of BP is the lone-pair electrons on each P atom. The lone-pair electrons inevitably cause high reactivity of BP, particularly toward water/oxygen, which greatly limits the practical application of BP under ambient conditions. The other side of the coin is that BP can serve as an electron donor to promote the construction of BP-based hybrid materials and/or to boost the performance of BP or BP-based hybrid materials in applications. Here, recent advances in passivation and application of BP by addressing the interaction between the lone-pair electrons of BP and the other materials are discussed, and prospects for future research on BP are also proposed.

16.
Small Methods ; 5(3): e2001056, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34927835

RESUMEN

Designing multi-functional separators is one of the effective strategies for achieving high-performance lithium-sulfur (Li-S) batteries. In this work, polyaniline (PANI) encapsulated amorphous vanadium pentoxide (V2 O5 ) nanowires (general formula V2 O5 ·nH2 O and abbreviated as VOH) are synthesized by a facile in situ chemical oxidative polymerization method, and utilized as a basic building block for the preparation of functional interlayers on the commercial polypropylene (PP) separator, generating a VOH@PANI-PP separator with multi-functionalities. Compared to the crystalline V2 O5 , the amorphous V2 O5 shows enhanced properties of polysulfide adsorption, catalytic activity, as well as ionic conductivity. Therefore, within the VOH@PANI-PP separator, the amorphous V2 O5 nanowire component contributes to the strong adsorption of polysulfides, the high catalytic activity for polysulfides conversion, and the high ionic conductivity. The PANI component further strengthens the above effects, improves the electrical conductivity, and enhances the flexibility of the modified separator. Benefiting from the synergistic effects, the VOH@PANI-PP separator effectively suppresses polysulfide shuttling and improves the cycling stability of its composed Li-S batteries. This work provides a new research strategy for the development of efficient separators in rechargeable batteries by judiciously integrating the amorphous metal oxide with a conductive polymer.

17.
Sci Adv ; 6(46)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33177081

RESUMEN

Rationally regulating the reactivity of molecules or functional groups is common in organic chemistry, both in laboratory and industry synthesis. This concept can be applied to inorganic nanomaterials, particularly two-dimensional black phosphorus (BP) nanosheets. The high reactivity of few-layer (even monolayer) BP is expected to be "shut down" when not required and to be resumed upon application. Here, we demonstrate a protective chemistry-based methodology for regulating BP reactivity. The protective step initiates from binding Al3+ with lone pair electrons from P to decrease the electron density on the BP surface, and ends with an oxygen/water-resistant layer through the self-assembly of hydrophobic 1,2-benzenedithiol (BDT) on BP/Al3+ This protective step yields a stabilized BP with low reactivity. Deprotection of the obtained BP/Al3+/BDT is achieved by chelator treatment, which removes Al3+ and BDT from the BP surface. The deprotective process recovers the electron density of BP and thus restores the reactivity of BP.

18.
Sci Bull (Beijing) ; 65(3): 225-232, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659176

RESUMEN

As essential components of numerous flexible and wearable optoelectronic devices, the flexible transparent conducting electrodes (TCEs) with sufficient optical transmittance and electric conductivity become more and more important. In this work, we fabricated a large-area flexible TCE based on leaf vein-like hierarchical metal grids (HMG) comprising of mesoscale "trunk" and microscale "branches". The self-formed branched grids made the conducting paths distributing uniformly while the laser-etching trunk grids enabled to transport the collected electrons across long-distance. The Ag HMG exhibited high optical transmittance (~81%) with low sheet resistance (1.36 Ω sq-1), which could be simply optimized through adjusting the grids' widths, spaces, and the sizes of the TiO2 colloidal crackle patterns. In addition, on the basis of such advanced HMG electrode, flexible electrochromic devices (ECDs) with remarkable cyclic performance were fabricated. The HMG with high transparency, conductivity, and flexibility provides a promising TCE for the next-generation flexible and wearable optoelectronic devices.

19.
Biosens Bioelectron ; 169: 112567, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32947084

RESUMEN

Self-powered flexible sensors play an increasingly important role in wearable and even implantable electronic devices. Silk protein is an ideal material for flexible sensors because of its terrific biocompatibility and controllable degradation rate. Here, we overcome the problem of mechanical flexibility and poor electrical conductivity of proteins, and develop a highly transparent, biocompatible, full-degradable and flexible triboelectric nanogenerator (Bio-TENG) for energy harvesting and wireless sensing. First, the mechanical flexibility of the silk protein film is greatly enhanced by the mesoscopic functionalization of regenerated silk fibroin (RSF) via adding glycerol and polyurethane (PU). Second, hollow silver nanofibers are constructed on the silk film to form an air-permeable, stretchable, biocompatible and degradable thin layer and utilized as friction electrode. The obtained Bio-TENG demonstrates high transparency (83% by one Ag gird layer), stretchability (Ɛ = 520%) and an instantaneous peak power density of 0.8 W m-2 that can drive wearable electronics. Besides, the Bio-TENG can work as artificial electronic skin for touch/pressure perception, and also for wirelessly controlling Internet of Things as a switch.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Electrodos , Electrónica , Nanotecnología
20.
RSC Adv ; 9(11): 5895-5900, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35517285

RESUMEN

Polypyrrole (PPY) is a type of dye adsorbent with good adsorbing capability. Fabrication of PPY with a porous architecture, though technically challenging, can further enhance its dye adsorbing capability due to the tremendous increase of surface area. In this manuscript, an oxidant-templating strategy was developed to fabricate pure PPY hydrogel (PHG) beads comprising nanofibrous networks, which were utilized as highly efficient dye absorbents. For instance, PPY hydrogel beads showed a maximum adsorption capacity of 236.9 mg g-1 for methyl orange (MO), which was significantly higher than that of PPY powder. The minimal effective concentration of MO for the adsorption was as low as 0.4 ppm. Besides that, the PPY hydrogel beads displayed good regeneration performance for adsorbing organic dyes. Thus, the PPY hydrogel beads with low solid contents and large surface area could be considered as a promising organic dye absorbent for wastewater treatment in various industrial fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA