Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolomics ; 19(4): 32, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997715

RESUMEN

INTRODUCTION: Acute ischemic stroke (AIS) accounts for the majority of all stroke, globally the second leading cause of death. Due to its rapid development after onset, its early diagnosis is crucial. OBJECTIVES: We aim to identify potential highly reliable blood-based biomarkers for early diagnosis of AIS using quantitative plasma lipid profiling via a machine learning approach. METHODS: Lipidomics was used for quantitative plasma lipid profiling, based on ultra-performance liquid chromatography tandem mass spectrometry. Our samples were divided into a discovery and a validation set, each containing 30 AIS patients and 30 health controls (HC). Differentially expressed lipid metabolites were screened based on the criteria VIP > 1, p < 0.05, and fold change > 1.5 or < 0.67. The least absolute shrinkage and selection operator (LASSO) and random forest algorithms in machine learning were used to select differential lipid metabolites as potential biomarkers. RESULTS: Three key differential lipid metabolites, CarnitineC10:1, CarnitineC10:1-OH and Cer(d18:0/16:0), were identified as potential biomarkers for early diagnosis of AIS. The former two, associated with thermogenesis, were down-regulated, whereas the latter, associated with necroptosis and sphingolipd metabolism, was upregulated. Univariate and multivariate logistic regressions showed that these three lipid metabolites and the resulting diagnostic model exhibited a strong ability in discriminating between AIS patients and HCs in both the discovery and validation sets, with an area under the curve above 0.9. CONCLUSIONS: Our work provides valuable information on the pathophysiology of AIS and constitutes an important step toward clinical application of blood-based biomarkers for diagnosing AIS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Lipidómica , Humanos , Metabolómica , Biomarcadores , Diagnóstico Precoz , Lípidos
2.
Front Cardiovasc Med ; 9: 848840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479277

RESUMEN

This study was aimed to determine the association between potential plasma lipid biomarkers and early screening and prognosis of Acute myocardial infarction (AMI). In the present study, a total of 795 differentially expressed lipid metabolites were detected based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Out of these metabolites, 25 lipid metabolites were identified which showed specifical expression in the AMI group compared with the healthy control (HC) group and unstable angina (UA) group. Then, we applied the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) methods to obtain three lipid molecules, including CarnitineC18:1-OH, CarnitineC18:2-OH and FFA (20:1). The three lipid metabolites and the diagnostic model exhibited well predictive ability in discriminating between AMI patients and UA patients in both the discovery and validation sets with an area under the curve (AUC) of 0.9. Univariate and multivariate logistic regression analyses indicated that the three lipid metabolites may serve as potential biomarkers for diagnosing AMI. A subsequent 1-year follow-up analysis indicated that the three lipid biomarkers also had prominent performance in predicting re-admission of patients with AMI due to cardiovascular events. In summary, we used quantitative lipid technology to delineate the characteristics of lipid metabolism in patients with AMI, and identified potential early diagnosis biomarkers of AMI via machine learning approach.

3.
Clin Chim Acta ; 535: 82-91, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964702

RESUMEN

BACKGROUND: Pulmonary tuberculosis (TB) is a serious infectious disease that lacks robust blood-based biomarkers to identify cured TB. Some discharged patients are not fully cured and may relapse or even develop multidrug-resistant TB. This study is committed to finding proteomic-based plasma biomarkers to support establishing laboratory standards for clinical TB cure. METHODS: Data-independent acquisition (DIA) was used to obtain the plasma protein expression profiles of TB patients at different treatment stages compared with healthy controls. Multivariate statistical methods and bioinformatics were used to analyze the data. RESULTS: Bioinformatic analysis suggests coagulation dysfunction and vitamin and lipid metabolism disturbances in TB. Albumin (ALB), haptoglobin (HP), out at first protein homolog (OAF), and retinol-binding protein 4 (RBP4) can be used to establish a diagnostic model for the efficacy evaluation of TB with an area under the curve of 0.963, which could effectively distinguish untreated TB patients from cured patients. CONCLUSIONS: Our research demonstrated that ALB, HP, OAF and RBP4 can be potential biomarkers for evaluating the efficacy of TB. These findings may provide experimental data for establishing the laboratory indicators of clinical TB cure and providing clinicians with new targets for exploring the underlying mechanisms of TB pathogenesis.


Asunto(s)
Tuberculosis Pulmonar , Humanos , Albúminas/análisis , Biomarcadores/sangre , Haptoglobinas/análisis , Proteómica , Proteínas Plasmáticas de Unión al Retinol/análisis , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA