Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786788

RESUMEN

At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we discussed the hazards of heavy-metal-containing quantum dots (QDs), such as environmental pollution and human health risks. Next, the main representatives of heavy-metal-free QDs were introduced, such as InP, ZnE (E=S, Se and Te), CuInS2, Ag2S, and so on. In the next section, we discussed the synthesis methods of heavy-metal-free QDs, including the hot injection (HI) method, the heat up (HU) method, the cation exchange (CE) method, the successful ionic layer adsorption and reaction (SILAR) method, and so on. Finally, important progress in the development of heavy-metal-free QLEDs was summarized in three aspects (QD emitter layer, hole transport layer, and electron transport layer).

2.
J Chromatogr A ; 1714: 464580, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38154349

RESUMEN

It is important to recycle the bovine blood discarded at slaughter and develop it into high value-added bovine serum products. Biomimetic affinity chromatography (BiAC) resins have been developed to specifically purify bovine serum immunoglobulin G (Bs-IgG). The BiAC strategy was used to screen the resins with the best purification effect on Bs-IgG. Four resins with specificity for Bs-IgG adsorption were selected from 90 BiAC resins. Finally, BiAC-A5-87 was selected and used to purify Bs-IgG based on the results of SDS-PAGE and BCA protein quantification analysis. The adsorption capacity and purity of BiAC-A5-87 were 32.79 ± 3.57 mg/mL and 85.9 ± 1.21 % for Bs-IgG, respectively. The total protein recovery rate of Bs-IgG purified by BiAC-A5-87 was 89.78±3.52 %. The resin of BiAC-A5-87 column was recycled in 40 breakthrough cycles, and its Bs-IgG adsorption efficiency decreased by less than 10 %. After soaking BiAC-A5-87 in 1.0 moL NaOH solution for 64 h, its adsorption capacity for Bs-IgG was almost the same as that before soaking. The development of waste bovine serum not only realizes the utilization of blood resources and produces high economic benefits but also reduces the pollution of the environment.


Asunto(s)
Biomimética , Inmunoglobulina G , Inmunoglobulina G/metabolismo , Cromatografía de Afinidad/métodos , Suero/metabolismo , Adsorción
3.
Micromachines (Basel) ; 14(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37421078

RESUMEN

AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs) have great application prospects in sterilization, UV phototherapy, biological monitoring and other aspects. Due to their advantages of energy conservation, environmental protection and easy miniaturization realization, they have garnered much interest and been widely researched. However, compared with InGaN-based blue LEDs, the efficiency of AlGaN-based DUV LEDs is still very low. This paper first introduces the research background of DUV LEDs. Then, various methods to improve the efficiency of DUV LED devices are summarized from three aspects: internal quantum efficiency (IQE), light extraction efficiency (LEE) and wall-plug efficiency (WPE). Finally, the future development of efficient AlGaN-based DUV LEDs is proposed.

4.
Micromachines (Basel) ; 14(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37241615

RESUMEN

GaN-based micro-size light-emitting diodes (µLEDs) have a variety of attractive and distinctive advantages for display, visible-light communication (VLC), and other novel applications. The smaller size of LEDs affords them the benefits of enhanced current expansion, fewer self-heating effects, and higher current density bearing capacity. Low external quantum efficiency (EQE) resulting from non-radiative recombination and quantum confined stark effect (QCSE) is a serious barrier for application of µLEDs. In this work, the reasons for the poor EQE of µLEDs are reviewed, as are the optimization techniques for improving the EQE of µLEDs.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37236071

RESUMEN

M. tuberculosis is the most successful intracellular pathogen and remains a major threat to human health. It is crucial to investigate the profile of cytoplasmic proteins from M. tuberculosis for pathogenesis, clinical markers, and protein vaccine development. In this study, six biomimetic affinity chromatography (BiAC) resins with high differences were selected for M. tuberculosis-cytoplasmic protein fractionation. All fractions were identified using liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 1246 M. tuberculosis proteins were detected (p < 0.05), among which 1092 M. tuberculosis proteins were identified in BiAC fractionations and 714 M. tuberculosis proteins in un-fractionations (Table S1.3.1). The majority of 66.8% (831/1246) identifications were distributed in the range of Mw 7.0-70.0 kDa, pI 3.5-8.0, and Gravy values <0.3. Furthermore, 560 M. tuberculosis proteins were detected in both the BiAC fractionations and un-fractionations. Compared with the un-fractionations, the average number of prot_matches, prot_cover, prot_sequence, and emPAI values of these 560 proteins in the BiAC fractionations were increased by 3.791, 1.420, 1.307, and 1.788 times, respectively. Overall, compared with un-fractionations, the confidence and profile of M. tuberculosis cytoplasmic proteins were improved by BiAC fractionations coupled with LC-MS/MS analysis. The strategy of BiAC fractionation can be used as an effective method for pre-separating protein mixtures in proteomic studies.


Asunto(s)
Biomimética , Tuberculosis , Humanos , Cromatografía Liquida/métodos , Proteómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Proteínas/química , Cromatografía de Afinidad/métodos
6.
Nat Genet ; 55(5): 852-860, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024581

RESUMEN

Effective utilization of wild relatives is key to overcoming challenges in genetic improvement of cultivated tomato, which has a narrow genetic basis; however, current efforts to decipher high-quality genomes for tomato wild species are insufficient. Here, we report chromosome-scale tomato genomes from nine wild species and two cultivated accessions, representative of Solanum section Lycopersicon, the tomato clade. Together with two previously released genomes, we elucidate the phylogeny of Lycopersicon and construct a section-wide gene repertoire. We reveal the landscape of structural variants and provide entry to the genomic diversity among tomato wild relatives, enabling the discovery of a wild tomato gene with the potential to increase yields of modern cultivated tomatoes. Construction of a graph-based genome enables structural-variant-based genome-wide association studies, identifying numerous signals associated with tomato flavor-related traits and fruit metabolites. The tomato super-pangenome resources will expedite biological studies and breeding of this globally important crop.


Asunto(s)
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Estudio de Asociación del Genoma Completo , Genoma de Planta/genética , Fitomejoramiento , Solanum/genética , Genómica
7.
Front Plant Sci ; 13: 861043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498672

RESUMEN

Melatonin widely mediates multiple developmental dynamics in plants as a vital growth stimulator, stress protector, and developmental regulator. N-acetylserotonin methyltransferase (ASMT) is the key enzyme that catalyzes the final step of melatonin biosynthesis in plants and plays an essential role in the plant melatonin regulatory network. Studies of ASMT have contributed to understanding the mechanism of melatonin biosynthesis in plants. However, AMST gene is currently uncharacterized in most plants. In this study, we characterized the JrASMT gene family using bioinformatics in a melatonin-rich plant, walnut. Phylogenetic, gene structure, conserved motifs, promoter elements, interacting proteins and miRNA analyses were also performed. The expansion and differentiation of the ASMT family occurred before the onset of the plant terrestrialization. ASMT genes were more differentiated in dicotyledonous plants. Forty-six ASMT genes were distributed in clusters on 10 chromosomes of walnut. Four JrASMT genes had homologous relationships both within walnut and between species. Cis-regulatory elements showed that JrASMT was mainly induced by light and hormones, and targeted cleavage of miRNA172 and miR399 may be an important pathway to suppress JrASMT expression. Transcriptome data showed that 13 JrASMT were differentially expressed at different periods of walnut bud development. WGCNA showed that JrASMT1/10/13/23 were coexpressed with genes regulating cell fate and epigenetic modifications during early physiological differentiation of walnut female flower buds. JrASMT12/28/37/40 were highly expressed during morphological differentiation of flower buds, associated with altered stress capacity of walnut flower buds, and predicted to be involved in the regulatory network of abscisic acid, salicylic acid, and cytokinin in walnut. The qRT-PCR validated the results of differential expression analysis and further provided three JrASMT genes with different expression profiles in walnut flower bud development. Our study explored the evolutionary relationships of the plant ASMT gene family and the functional characteristics of walnut JrASMT. It provides a valuable perspective for further understanding the complex melatonin mechanisms in plant developmental regulation.

8.
Front Plant Sci ; 13: 834027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865296

RESUMEN

As one of the most important vegetable crops in the world, the production of tomatoes was restricted by salt stress. Therefore, it is of great interest to analyze the salt stress tolerance genes. As the non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides, long non-coding RNAs (lncRNAs) lack the ability of protein-coding, but they can play crucial roles in plant development and response to abiotic stresses by regulating gene expression. Nevertheless, there are few studies on the roles of salt-induced lncRNAs in tomatoes. Therefore, we selected wild tomato Solanum pennellii (S. pennellii) and cultivated tomato M82 to be materials. By high-throughput sequencing, 1,044 putative lncRNAs were identified here. Among them, 154 and 137 lncRNAs were differentially expressed in M82 and S. pennellii, respectively. Through functional analysis of target genes of differentially expressed lncRNAs (DE-lncRNAs), some genes were found to respond positively to salt stress by participating in abscisic acid (ABA) signaling pathway, brassinosteroid (BR) signaling pathway, ethylene (ETH) signaling pathway, and anti-oxidation process. We also construct a salt-induced lncRNA-mRNA co-expression network to dissect the putative mechanisms of high salt tolerance in S. pennellii. We analyze the function of salt-induced lncRNAs in tomato roots at the genome-wide levels for the first time. These results will contribute to understanding the molecular mechanisms of salt tolerance in tomatoes from the perspective of lncRNAs.

9.
Front Genet ; 12: 753638, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621298

RESUMEN

SRO (SIMILAR TO RCD ONE) is a family of plant-specific small molecule proteins that play an important role in plant growth and development and environmental responses. However, SROs still lack systematic characterization in tomato. Based on bioinformatics methods, SRO family genes were identified and characterized from cultivated tomatoes and several wild tomatoes. qRT-PCR was used to study the expression of SRO gene in cultivated tomatoes. Phylogenetic and evolutionary analyses showed that SRO genes in angiosperms share a common ancestor and that the number of SRO family members changed as plants diverged and evolved. Cultivated tomato had six SRO members, five of which still shared some degree of identity with the ancestral SRO genes. Genetic structure and physicochemical properties showed that tomato SRO genes were highly conserved with chromosomal distribution. They could be divided into three groups based on exon-intron structure, and cultivated tomato contained only two of these subclades. A number of hormonal, light and abiotic stress-responsive cis-regulatory elements were identified from the promoter of the tomato SRO gene, and they also interacted with a variety of stress-responsive proteins and microRNAs. RNA-seq analysis showed that SRO genes were widely expressed in different tissues and developmental stages of tomato, with significant tissue-specific features. Expression analysis also showed that SRO genes respond significantly to high temperature and salt stress and mediate the tomato hormone regulatory network. These results provide a theoretical basis for further investigation of the functional expression of tomato SRO genes and provide potential genetic resources for tomato resistance breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA