Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 751: 109847, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052383

RESUMEN

Exposure to lipopolysaccharide (LPS) can lead to inflammation in a variety of tissues and organs. Selenium (Se) plays a crucial role in mitigating inflammatory damage. Compared with inorganic selenium, organic selenium, such as selenomethionine (SeMet), has the advantages of a higher absorption rate and lower toxicity in animals. This study examined the protective effects of SeMet on eggshell gland tissue damage caused by LPS. Hy-Line Brown laying hens were chosen as the experimental animals and were randomly assigned to four groups: control group (C), lipopolysaccharide group (LPS), SeMet group (Se), and SeMet + lipopolysaccharide group (Se + LPS). H&E staining and transmission electron microscope were performed to observe the pathological changes of eggshell glands, oxidative stress related indicators were measured using relevant kits, qRT‒PCR and western blotting were used to evaluate the mRNA and protein levels of the Nrf2 pathway, necroptosis, and inflammation related indicators. The results showed that LPS treatment increased the content of malondialdehyde (MDA), decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and decreased the content of glutathione (GSH). LPS increased the levels of Keap1, RIPK1, RIPK3, MLKL, TNF-α, COX-2, and NF-κB, while decreasing the levels of HO-1, NQO1, Nrf2, and Caspase-8. However, SeMet treatment effectively reversed the changes of the above indicators, indicating that SeMet alleviates eggshell gland cell necroptosis-mediated inflammation induced by LPS via regulating the Keap1/Nrf2/HO-1 pathway. This study elucidated the mechanism by which SeMet alleviates LPS-induced eggshell gland tissue damage in Hy-Line Brown laying hens and provided a new direction for expanding the application of SeMet in the feeding and production of laying hens.


Asunto(s)
Selenio , Selenometionina , Femenino , Animales , Selenometionina/farmacología , Selenometionina/metabolismo , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Pollos/metabolismo , Selenio/farmacología , Selenio/metabolismo , Cáscara de Huevo/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Necroptosis , Inflamación/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Antioxidantes/farmacología
2.
Fish Shellfish Immunol ; 146: 109384, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246267

RESUMEN

Bisphenol A (BPA) and its analogues are still one of the most important substances that pollute aquatic systems and pose a threat to aquatic organisms. Tannic acid (TAN) is a kind of glycosyl compound, which has the functions of anti-oxidation, anti-inflammation and anti-apoptosis. However, it is unknown if BPA can regulate PTEN/PI3K/AKT pathway to induce pyroptosis of grass carp hepatocytes (L8824) and the antagonistic effect of tannic acid (TAN) through oxidative stress. Therefore, we established the grass carp hepatocytes (L8824) cell model treated with BPA. The oxidative stress indexes (SOD, CAT, GSH, H2O2 and T-AOC) were detected by oxidative stress kit, mRNA and protein expression of associated genes were examined using qRT-PCR and western blotting. The results showed that BPA treatment increased the content of hydrogen peroxide and decreased the activities of antioxidant enzymes and antioxidants (SOD, CAT, GSH, and T-AOC) in L8824 cells. We also found that PTEN/PI3K/AKT pathway was activated dramatically and the expression of pyroptosis-related genes (GSDMD, NLRP3, Caspase1, ASC and IL-1ß) was increased significantly. In addition, TAN could significantly reduce the toxicity of BPA on L8824 cells. After the addition of PTEN specific inhibitor SF1670, the activation of PTEN/PI3K/AKT pathway decreased by BPA was inhibited and the expression of scorch related genes was decreased. On the whole, TAN inhibits BPA-induced pyroptosis of L8824 by modulating the PTEN/PI3K/AKT pathway. The present study provides a novel perspective for toxicological mechanism of BPA, and new insights into the detoxification mechanism of TAN.


Asunto(s)
Compuestos de Bencidrilo , Carpas , Fenoles , Polifenoles , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Carpas/genética , Carpas/metabolismo , Piroptosis , Peróxido de Hidrógeno/farmacología , Antioxidantes/farmacología , Hepatocitos/metabolismo , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Ecotoxicol Environ Saf ; 269: 115779, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056124

RESUMEN

Mercury (Hg) is a serious metal environmental pollutant. HgCl2 exposure causes pyroptosis. When macrophages are severely stimulated, they often undergo M1 polarization and release inflammatory factors. However, the mechanisms by which mercuric chloride exposure induces macrophage apoptosis, M1 polarization, and inflammatory factors remain unclear. HD11 cells were exposed to different concentrations of Hg chloride (180, 210 and 240 nM HgCl2). The results showed that mercury chloride exposure up-regulated ROS, C-Nrf2 and its downstream factors (NQO1 and HO-1), and down-regulated N-Nrf2. In addition, the expressions of focal death-related indicators (Caspase-1, NLRP3, GSDMD, etc.), M1 polarization marker CD86 and inflammatory factors (TNF-α, IL-1ß) increased, and the above changes were related to mercury. Oxidative stress inhibitor (NAC) can block ROS/ NrF2-mediated oxidative stress, inhibit mercury-induced pyroptosis and M1 polarization, and effectively reduce the release of inflammatory factors. The addition of Vx-765 to inhibit pyroptosis can effectively alleviate M1 polarization of HD11 cells and reduce the expression of inflammatory factors. HgCl2 mediates pyroptosis of HD11 cells by regulating ROS/Nrf2/NLRP3, promoting M1 polarization and the release of inflammatory factors.


Asunto(s)
Mercurio , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Pollos/metabolismo , Cloruros , Inflamación/metabolismo , Mercurio/efectos adversos , Mercurio/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales
4.
Pestic Biochem Physiol ; 198: 105726, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225081

RESUMEN

Chlorpyrifos (Diethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-yl) oxy-λ5-phosphane, CPF) was extensively used organophosphorus pesticide, extensively deteriorating public problem with the enrichment in the water bodies. Eucalyptol (1,3,3-Trimethyl-2-oxabicyclo[2.2.2] octane, EUC), a colorless cyclic monoterpene oxide, has shown anti-inflammatory and anti-oxidation properties. To explore the effect of EUC on CPF-induced necroptosis in the grass carp liver cells (L8824 cells), we treated L8824 cells with 60 mM CPF and 5 µM EUC for 24 h. The results showed that CPF exposed lead to excessive accumulation of reactive oxygen species (ROS) and oxidative stress, activating the NF-κB and RIPK1 pathway, increasing the level of cell necroptosis. However, EUC treatment attenuated the toxic effects of CPF treatment on L8824 cells. In summary, the study demonstrated that CPF induced necroptosis and inflammation, and EUC treatment could decrease CPF-caused cell injury.


Asunto(s)
Carpas , Cloropirifos , Plaguicidas , Animales , Cloropirifos/toxicidad , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Eucaliptol/metabolismo , Eucaliptol/farmacología , Plaguicidas/farmacología , Carpas/metabolismo , Necroptosis , Compuestos Organofosforados/metabolismo , Estrés Oxidativo , Hígado/metabolismo
5.
Pestic Biochem Physiol ; 202: 105941, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879332

RESUMEN

Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including ß-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.


Asunto(s)
Carpas , Ivermectina , FN-kappa B , Óxido Nítrico , Resveratrol , Transducción de Señal , Animales , Carpas/metabolismo , FN-kappa B/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Ivermectina/farmacología , Óxido Nítrico/metabolismo , Transducción de Señal/efectos de los fármacos , Resveratrol/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Apoptosis/efectos de los fármacos , Línea Celular , Autofagia/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo
6.
Pestic Biochem Physiol ; 202: 105935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879327

RESUMEN

Imidacloprid (IMI) is a contaminant widespread in surface water, causing serious intestinal damage in the common carp. Melatonin (MT), an endogenous indoleamine hormone, plays a crucial role in mitigating pesticide-induced toxicity. Our previous research has demonstrated that MT effectively reduces the production of intestinal microbial-derived signal peptidoglycan (PGN) induced by IMI, thereby alleviating intestinal tight junction injuries in the common carp. In this study, we performed a transcriptomic analysis to explore the effect of MT on the IMI exposure-induced gut damage of the common carp. The results elucidated that the ferroptosis, mitogen-activated protein kinases (MAPKs), and nucleotide oligomerization domain (NOD)-like signaling pathways were significantly associated with IMI exposure and MT treatment. Meanwhile, the exposure to IMI resulted in the formation of pyroptotic bodies and distinct morphological features of ferroptosis, both mitigated with the addition of MT. Immunofluorescence double staining demonstrated that MT abolished the elevated expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Gasdermin D (GSDMD) induced by IMI, as well as reduced expression of ferritin heavy chains (FTH) and glutathione peroxidase 4 (GPX4) in gut tissues. Subsequently, we found that the exposure to IMI or PGN enhanced the expression of toll-like receptors (TLR) 2 (a direct recognition receptor of PGN) triggering the P38MAPK signaling pathway, thereby aggravating the process of pyroptosis and ferroptosis of cell models. The addition of MT or SB203580 (a P38MAPK inhibitor) significantly reduced pyroptotic cells, and also decreased iron accumulation. Consequently, these results indicate that MT alleviates IMI-induced pyroptosis and ferroptosis in the gut of the common carp through the PGN/TLR2/P38MAPK pathway.


Asunto(s)
Carpas , Ferroptosis , Melatonina , Neonicotinoides , Nitrocompuestos , Peptidoglicano , Piroptosis , Animales , Carpas/metabolismo , Ferroptosis/efectos de los fármacos , Melatonina/farmacología , Piroptosis/efectos de los fármacos , Neonicotinoides/farmacología , Neonicotinoides/toxicidad , Peptidoglicano/farmacología , Nitrocompuestos/toxicidad , Nitrocompuestos/farmacología , Insecticidas/toxicidad , Intestinos/efectos de los fármacos
7.
Environ Toxicol ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004893

RESUMEN

Trimethyltin chloride (TMT) is a highly toxic organotin pollutant frequently found in aquatic environments, posing a significant threat to the ecological system. The kidney plays a vital role in the body's detoxification processes, and TMT present in the environment tends to accumulate in the kidneys. However, it remained unclear whether exposure to different doses of TMT could induce pyroptosis and immune dysfunction in grass carp kidney cells (CIK cells). For this purpose, after assessing the half-maximal inhibitory concentration (IC50) of TMT on CIK cells, we established a model for exposure of CIK cells at varying concentrations of TMT. CIK cells were treated with various doses of TMT (2.5, 5, 10 µM) for 24 h. Oxidative stress levels were measured using kits and fluorescence methods, whereas the expression of related genes was verified through western blot and quantitative real-time PCR (qRT-PCR). The results indicated that TMT exposure led to oxidative stress, with increased levels of ROS, H2O2, MDA, and GSH, and inhibited activities of T-AOC, SOD, and CAT. It activated the NF-κB pathway, leading to the upregulation of NF-κB p65, NF-κB p50, GSDMD, NLRP3, ASC, and Caspase-1. Furthermore, TMT exposure also resulted in increased expression of cytokines (IL-18, IL-6, IL-2, IL-1ß, and TNF-α) and decreased expression of antimicrobial peptides (LEAP2, HEPC, and ß-defensin). In summary, exposure to TMT induces dose-dependent oxidative stress that activates the NF-κB pathway, leading to pyroptosis and immune dysfunction in grass carp CIK cells.

8.
J Biol Chem ; 298(6): 102016, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35525273

RESUMEN

Ubiquitin-fold modifier 1 (UFM1) is a recently identified ubiquitin-like posttranslational modification with important biological functions. However, the regulatory mechanisms governing UFM1 modification of target proteins (UFMylation) and the cellular processes controlled by UFMylation remain largely unknown. It has been previously shown that a UFM1-specific protease (UFSP2) mediates the maturation of the UFM1 precursor and drives the de-UFMylation reaction. Furthermore, it has long been thought that UFSP1, an ortholog of UFSP2, is inactive in many organisms, including human, because it lacks an apparent protease domain when translated from the canonical start codon (445AUG). Here, we demonstrate using the combination of site-directed mutagenesis, CRISPR/Cas9-mediated genome editing, and mass spectrometry approaches that translation of human UFSP1 initiates from an upstream near-cognate codon, 217CUG, via eukaryotic translation initiation factor eIF2A-mediated translational initiation rather than from the annotated 445AUG, revealing the presence of a catalytic protease domain containing a Cys active site. Moreover, we show that both UFSP1 and UFSP2 mediate maturation of UFM1 and de-UFMylation of target proteins. This study demonstrates that human UFSP1 functions as an active UFM1-specific protease, thus contributing to our understanding of the UFMylation/de-UFMylation process.


Asunto(s)
Cisteína Endopeptidasas , Péptido Hidrolasas , Proteínas , Codón Iniciador/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Ubiquitina/metabolismo
9.
J Cell Physiol ; 238(7): 1605-1621, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269461

RESUMEN

Cadmium (Cd) is a toxic metal pollutant that still exists in the environment. The microRNA (miRNA) is a type of noncoding RNA that plays an important role in gene posttranscriptional regulation and disease development. Although the toxic effects of Cd have been extensively studied, studies on the mechanism of Cd from the perspective of miRNA are still limited. So, we established a Cd-exposure pig model, which confirmed that Cd exposure would cause pig artery damage. The miR-210 with the most reduced expression and the nuclear factor kappa B (NF-κB) that had a targeting relationship with miR-210 were screened. The effect of miR-210/NF-κB on the artery damage induced by Cd exposure was investigated by acridine orange/ethidium bromide staining, reactive oxygen species (ROS) staining, quantitative PCR, and western blotting. The results showed that miR-210 inhibitor, pcDNA-NF-κB could induce ROS overproduction in pig hip artery endothelial cells, thus inducing Th1/Th2 imbalance and necroptosis, leading to increased inflammation, while small interfering RNA-NF-κB played a mitigating role. In conclusion, Cd can induce artery necroptosis and Th1/Th2 imbalance by regulating the miR-210/NF-κB axis, so as to lead to artery inflammatory damage. In this study, we explored the way in which Cd exposure causes artery damage in pig, providing a new perspective on the regulatory damage of miR-210/NF-κB axis.


Asunto(s)
Arteritis , Cadmio , MicroARNs , FN-kappa B , Animales , Arterias/metabolismo , Cadmio/toxicidad , Células Endoteliales/metabolismo , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Porcinos , Arteritis/metabolismo
10.
Ann Rheum Dis ; 82(12): 1568-1579, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37580109

RESUMEN

OBJECTIVES: The severity of skin involvement in diffuse cutaneous systemic sclerosis (dcSSc) depends on stage of disease and differs between anti-RNA-polymerase III (ARA) and anti-topoisomerase antibody (ATA) subsets. We have investigated cellular differences in well-characterised dcSSc patients compared with healthy controls (HCs). METHODS: We performed single-cell RNA sequencing on 4 mm skin biopsy samples from 12 patients with dcSSc and HCs (n=3) using droplet-based sequencing (10× genomics). Patients were well characterised by stage (>5 or <5 years disease duration) and autoantibody (ATA+ or ARA+). Analysis of whole skin cell subsets and fibroblast subpopulations across stage and ANA subgroup were used to interpret potential cellular differences anchored by these subgroups. RESULTS: Fifteen forearm skin biopsies were analysed. There was a clear separation of SSc samples, by disease, stage and antibody, for all cells and fibroblast subclusters. Further analysis revealed differing cell cluster gene expression profiles between ATA+ and ARA+ patients. Cell-to-cell interaction suggest differing interactions between early and late stages of disease and autoantibody. TGFß response was mainly seen in fibroblasts and smooth muscle cells in early ATA+dcSSc skin samples, whereas in early ARA+dcSSc patient skin samples, the responding cells were endothelial, reflect broader differences between clinical phenotypes and distinct skin score trajectories across autoantibody subgroups of dcSSc. CONCLUSIONS: We have identified cellular differences between the two main autoantibody subsets in dcSSc (ARA+ and ATA+). These differences reinforce the importance of considering autoantibody and stage of disease in management and trial design in SSc.


Asunto(s)
Esclerodermia Difusa , Esclerodermia Sistémica , Humanos , Autoanticuerpos , Esclerodermia Sistémica/patología , Esclerodermia Difusa/patología , Piel/patología , Análisis de la Célula Individual
11.
Ann Rheum Dis ; 82(9): 1191-1204, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328193

RESUMEN

OBJECTIVES: Systemic sclerosis (SSc) is characterised by extensive tissue fibrosis maintained by mechanotranductive/proadhesive signalling. Drugs targeting this pathway are therefore of likely therapeutic benefit. The mechanosensitive transcriptional co-activator, yes activated protein-1 (YAP1), is activated in SSc fibroblasts. The terpenoid celastrol is a YAP1 inhibitor; however, if celastrol can alleviate SSc fibrosis is unknown. Moreover, the cell niches required for skin fibrosis are unknown. METHODS: Human dermal fibroblasts from healthy individuals and patients with diffuse cutaneous SSc were treated with or without transforming growth factor ß1 (TGFß1), with or without celastrol. Mice were subjected to the bleomycin-induced model of skin SSc, in the presence or absence of celastrol. Fibrosis was assessed using RNA Sequencing, real-time PCR, spatial transcriptomic analyses, Western blot, ELISA and histological analyses. RESULTS: In dermal fibroblasts, celastrol impaired the ability of TGFß1 to induce an SSc-like pattern of gene expression, including that of cellular communication network factor 2, collagen I and TGFß1. Celastrol alleviated the persistent fibrotic phenotype of dermal fibroblasts cultured from lesions of SSc patients. In the bleomycin-induced model of skin SSc, increased expression of genes associated with reticular fibroblast and hippo/YAP clusters was observed; conversely, celastrol inhibited these bleomycin-induced changes and blocked nuclear localisation of YAP. CONCLUSIONS: Our data clarify niches within the skin activated in fibrosis and suggest that compounds, such as celastrol, that antagonise the YAP pathway may be potential treatments for SSc skin fibrosis.


Asunto(s)
Esclerodermia Sistémica , Enfermedades de la Piel , Humanos , Animales , Ratones , Tripterygium , Esclerodermia Sistémica/patología , Fibrosis , Enfermedades de la Piel/patología , Piel/patología , Bleomicina/farmacología , Fibroblastos/metabolismo , Factores de Transcripción/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad
12.
Ann Rheum Dis ; 82(9): 1205-1217, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414521

RESUMEN

OBJECTIVES: We have studied the damage-associated molecular pattern protein S100A4 as a driver of fibroblast activation in systemic sclerosis (SSc). METHODS: S100A4 protein concentration was measured by ELISA in serum of SSc (n=94) and healthy controls (n=15). Protein expression in skin fibroblast cultures from diffuse cutaneous SSc (SScF, n=6) and healthy controls (normal fibroblasts (NF), n=6) was assessed. Recombinant S100A4 and a high affinity anti-S100A4 neutralising monoclonal antibody (AX-202) were tested on SScF and NF. RESULTS: Median (range) S100A4 (ng/mL) was higher in serum of SSc (89.9 (15.0-240.0)) than healthy controls (71.4 (7.9-131.8); p=0.027). There was association with SSc-interstitial lung disease (p=0.025, n=55), scleroderma renal crisis (p=0.026, n=4). Median (range) S100A4 (ng/mL) was higher in culture supernatants of SScF (4.19 (0.52-8.42)) than NF controls (0.28 (0.02-3.29); p<0.0001). AX-202 reduced the constitutive profibrotic gene and protein expression phenotype of SScF. Genome-wide RNA sequencing analysis identified an S100A4 activated signature in NF overlapping the hallmark gene expression signature of SScF. Thus, 464 differentially expressed genes (false discovery rate (FDR) <0.001 and fold change (FC) >1.5) induced in NF by S100A4 were also constitutively overexpressed, and downregulated by AX-202, in SScF. Pathway mapping of these S100A4 dependent genes in SSc showed the most significant enriched Kegg pathways (FDR <0.001) were regulation of stem cell pluripotency (4.6-fold) and metabolic pathways (1.9-fold). CONCLUSION: Our findings provide compelling evidence for a profibrotic role for S100A4 in SSc and suggest that serum level may be a biomarker of major organ manifestations and disease severity. This study supports examining the therapeutic potential of targeting S100A4 in SSc.


Asunto(s)
Esclerodermia Sistémica , Humanos , Fibroblastos/metabolismo , Fenotipo , Piel/patología
13.
Fish Shellfish Immunol ; 141: 109053, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661036

RESUMEN

Chlorpyrifos (CPF) is a typical organophosphate insecticide known to has serious toxicological effects on aquatic animals and causes many environmental contamination problems. To assess the effects of CPF on the epithelioma papulosum cyprini (EPC) cells of the common carps from the point of calcium ion (Ca2+) transport, the CPF-exposed EPC models were primarily established, and both AO/EB staining and Annexin V/PI assay with flow cytometry analysis were subsequently implemented to identify that CPF-induced EPC cell apoptosis, in consistent with the up-regulated expression of BAX, Cyt-c, CASP3 and CASP9, and down-regulated BCL-2 expression. Then, Mag-Fluo-4 AM, Fluo-4 AM and Rhod-2 AM staining probes were co-stained with ER-Tracker Red and Mito-Tracker Green applied to image cellular Ca2+ flux, illuminating Ca2+ depleted from ER and flux into mitochondria, resulting in ER stress and mitochondrial dysfunction. Additionally, 2-Aminoethyl Diphenylborinate (2-APB), 4-Phenylbutyric acid (4-PBA) and Dorsomorphin (Compound C) were performed as the inhibitor of Ca2+ transition, ER stress and AMPK phosphorylation, suggesting CPF-mediated Ca2+ overload triggered ER stress. And the over-generation of Mito-ROS intensified oxidative stress, promoting the phosphorylation of AMPK and deteriorating cell apoptotic death. The results of this study demonstrated Ca2+ overload-dependent mitochondrial dysfunction engages in the CPF-induced apoptosis, providing a novel concept for investigating the toxicity of CPF as environmental pollution on aquatic organisms.

14.
Fish Shellfish Immunol ; 142: 109148, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805109

RESUMEN

Emamectin benzoate (EMB) is the most widely used pesticide in the world and contributes to water pollution. Owing to the lack of a specific antidote, EMB has a severe negative impact on the health of aquatic organisms. Resveratrol (RES), a substance with antioxidant capacity, is secreted by the fruits of many plants. This study was to explore the protection of RES against EMB-induced pyroptosis and inflammatory response in grass carp (Ctenopharyngodon idellus) hepatic liver (L8824) cells by oxidative stress/endoplasmic reticulum (ER) stress. The results showed that compared to the CON group, EMB induced oxidative stress in L8824 cells with the increase of reactive oxygen species (ROS), methane dicarboxylic aldehyde (MDA), and hydrogen peroxide (H2O2) contents and the decrease of total superoxide dismutase (t-sod) and glutathione peroxidase (gsh-px) activities (P < 0.05). In addition, EMB triggered ERS, increasing the relative mRNA expression of protein kinase R-like endoplasmic reticulum kinase (perk), inositol requiring enzyme 1 alpha (ire1α), glucose-regulated protein 78 (grp78), activating transcription factor 4 (atf4), activating transcription factor 6 (atf6), and CCAAT-enhancer-binding protein homologous protein (chop) and the protein expression of eukaryotic initiation factor 2α (eif2α), chop, atf6, and atf4. Meanwhile, EMB further induced pyroptosis by upregulating the mRNA and protein expression of nlrp3, aptamer protein (asc), caspase-1, gsdmd, interleukin-1ß (il-1ß), and interleukin-18 (il-18). EMB also induced inflammation in L8824 cells by increasing the mRNA expression of interleukin-2 (il-2), interleukin-6 (il-6), tumor necrosis factor-α (tnf-α), and ifn-γ and decreasing the content of interleukin-10 (il-10). However, compared to the EMB group, the oxidant indices and expression of genes related to ER stress, pyroptosis, and pro-inflammatory factors were significantly down-regulated (P < 0.05), whereas the antioxidant indicators and anti-inflammatory factor were significantly up-regulated in the EMB + RES group (P < 0.05). In conclusion, EMB caused hepatocytes pyroptosis and inflammation in grass carp, and RES could alleviate EMB-induced pyroptosis and inflammation in L8824 cells by ameliorating oxidative stress/ER stress.


Asunto(s)
Carpas , Endorribonucleasas , Animales , Resveratrol , Piroptosis , Antioxidantes , Peróxido de Hidrógeno , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/veterinaria , Hepatocitos , ARN Mensajero , Apoptosis
15.
Fish Shellfish Immunol ; 140: 108985, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536468

RESUMEN

Pesticide mixtures can reduce pest resistance, however, their overuse severely threatens aquatic animal survival and public health. Avermectin (AVM) and imidacloprid (IMI) are potent insecticides often employed in agriculture. By inducing oxidative stress, these chemicals can induce cell death. Here, we evaluated the combined toxicity of AVM and IMI on EPC cells based on the concept of toxicity units (TU). We established EPC cell models exposed to AVM and IMI alone and in combination. The results showed that AVM and IMI had additive effects on the toxicity of EPC cells. Meanwhile, the co-exposure of AVM and IMI exacerbated oxidative stress and induced excessive production of reactive oxygen species (ROS), triggered Keap1/Nrf2/TXNIP axis, caused DNA damage and increased the expression of genes related to pyroptosis. In addition, co-exposure to AVM and IMI caused immunosuppression of EPC cells. The ROS inhibitor N-Acetyl-l-cysteine (NAC) can dramatically reverse these alterations brought on by AVM and IMI co-exposure. The findings above conclude that co-exposure to AVM and IMI causes DNA damage, pyroptosis, and immunosuppression in EPC cells through the ROS-mediated Keap1/Nrf2/TXNIP pathway. This study revealed the joint toxicity of AVM and IMI on EPC cells, and reminded people to consider its impact on aquatic animals when using pesticide mixtures.


Asunto(s)
Carcinoma , Plaguicidas , Animales , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Piroptosis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo , Plaguicidas/toxicidad , Daño del ADN
16.
Fish Shellfish Immunol ; 139: 108883, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285874

RESUMEN

Chlorpyrifos (CPF) has caused large-scale pollution worldwide and posed a threat to non-target organisms. Baicalein (BAI) is a flavonoid extract with anti-oxidant and anti-inflammatory activities. The gills are the mucosal immune organ and the first physical barrier of fish. However, it is not clear whether BAI counteracts organophosphorus pesticide CPF exposure-caused gill damage. Therefore, we established the CPF exposure and BAI intervention models by adding 23.2 µg/L CPF in water and/or 0.15 g/kg BAI in feed for 30 days. The results showed that CPF exposure could cause gill histopathology lesions. Moreover, CPF exposure led to endoplasmic reticulum (ER) stress, caused oxidative stress and Nrf2 pathway activation, and triggered NF-κB-mediated inflammation reaction and necroptosis in carp gills. BAI adding effectively relieved the pathological changes, and lighten inflammation and necroptosis involving in the elF2α/ATF4 and ATF6 pathways through binding to GRP78 protein. Moreover, BAI could ease oxidative stress, but did not affect Nrf2 pathway in carp gills under CPF exposure. These results suggested that BAI feeding could alleviate necroptosis and inflammation against chlorpyrifos toxicity through elF2α/ATF4 and ATF6 axis. The results partially explained the poisoning effect of CPF, and showed BAI could be act as an antidote for organophosphorus pesticides.


Asunto(s)
Carpas , Cloropirifos , Plaguicidas , Animales , Cloropirifos/toxicidad , Branquias/metabolismo , Compuestos Organofosforados , Plaguicidas/metabolismo , Plaguicidas/farmacología , Carpas/metabolismo , Necroptosis , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Flavonoides/farmacología , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/veterinaria , Inflamación/metabolismo
17.
Fish Shellfish Immunol ; 143: 109223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972744

RESUMEN

Bis(2-ethylhexyl) phthalate (DEHP) is not only a widely used plasticizer but also a common endocrine disruptor that frequently lingers in water, posing a threat to the health of aquatic organisms. Quercetin (Que) is a common flavonol found in the plant kingdom known for its antioxidant, anti-inflammatory, and immunomodulatory effects. However, it is still unclear whether DEHP can cause pyroptosis and affect the expression of cytokines of grass carp L8824 cells and whether Que has antagonistic effect in this process. In our study, grass carp L8824 cells were treated into four groups after 24 h, namely NC group, DEHP group (1000 µM DEHP), Que group (5 µM Que), and DEHP + Que group (1000 µM DEHP + 5 µM Que). Our results indicate a significant increase in the level of ROS in L8824 cells after exposure to DEHP. DEHP upregulated oxidative stress markers (H2O2 and MDA) and downregulated antioxidant markers (CAT, GSH, SOD, and T-AOC). DEHP also upregulated MAPK and NF-κB signal pathway-related proteins and mRNA expressions (p-p38, p-JNK, p-EPK, and p65). As for cell pyroptosis and its related pathways, DEHP upregulated pyroptosis-related protein and mRNA expressions (GSDMD, IL-1ß, NLRP3, Caspase-1, LDH, pro-IL-18, IL-18, and ASC). Finally, DEHP can up-regulated cytokines (IL-6 and TNF-α) expression, down-regulated cytokines (IL-2 and IFN-γ) expression, and antimicrobial peptides (ß-defensin, LEAP2, and HEPC). The co-treatment of L8824 cells with DEHP and Que inhibited the activation of the ROS/MAPK/NF-κB axis, alleviated pyroptosis, and restored expression of immune-related indicators. Finally, NAC was applied to reverse intervention of oxidative stress. In summary, Que inhibited DEHP-induced pyroptosis and the influence on cytokine and antimicrobial peptide expression in L8824 cells by regulating the ROS/MAPK/NF-κB pathway. Our results demonstrate the threat to fish health from DEHP exposure and confirmed the harm of DEHP to the aquatic ecological environment and the detoxification effect of Que to DEHP, which provides a theoretical basis for environmental toxicology.


Asunto(s)
Carpas , Dietilhexil Ftalato , Animales , FN-kappa B/metabolismo , Citocinas/genética , Citocinas/farmacología , Antioxidantes/metabolismo , Dietilhexil Ftalato/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Quercetina/farmacología , Interleucina-18/farmacología , Piroptosis/fisiología , Carpas/metabolismo , Peróxido de Hidrógeno/farmacología , Línea Celular , ARN Mensajero
18.
Fish Shellfish Immunol ; 141: 109000, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597642

RESUMEN

3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) is extensively utilized in electronic products, lubricant, and insecticide due to its excellent chemical stability and insulation prosperity, resulting in its frequent detection in environment. In addition, atmospheric deposition, as well as industrial and urban wastewater discharge can also lead to PCB126 contamination in marine environment, triggering damages to the tissues of aquatic organisms through oxidative stress. Astilbin is a type of flavonoid compound found in plants that plays a crucial role in providing powerful antioxidant and anti-inflammatory properties. In this study, we aimed to investigate the specific mechanism of PCB126-induced damage and the potential protective effect of Astilbin. To achieve this, we treated grass carp hepatocytes (L8824) with 75 µM PCB126 and/or 0.5 mM Astilbin for 24 h and used experimental methods such as Flow cytometry, molecular docking, PPI analysis, detection of commercial kits (ATP concentration and ATPnase activity) and measurement of mitochondrial membrane potential (ΔΨm). Our findings revealed that PCB126 exposure resulted in a decrease in expression levels of Sirt1, factors related to mitochondrial fusion (Opa1, Mfn1, and Mfn2), antioxidant (CAT, SOD1, and SOD2), energy metabolism (PKM2, IDH, and SDH) and anti-apoptosis (Bcl-2), and an increase in expression levels of Nrf2 acetylation, mitochondrial fission (Drp1), factors that promote apoptosis (Cytc, Bax, Cas9, and Cas3) in L8824 cells. Furthermore, our findings revealed a decrease in ΔΨm, ATP concentration and ATPnase activity and apoptosis levels in L8824 cells. Noteworthy, treatment with Astilbin reversed these results. Molecular docking provides solid evidence for the interaction between Astilbin and Sirt1. In summary, our findings suggested that Astilbin promoted the deacetylation of Nrf2 by interacting with Sirt1, thereby alleviating PCB126-induced mitochondrial apoptosis mediated by mitochondrial dynamics imbalance and energy metabolism disorder through the inhibition of oxidative stress in L8824 cells. Our research has initially revealed the correlation between acetylation and apoptosis induced by PCB126, which provided a foundation for a better comprehension of PCB126 toxicity. Additionally, it expanded the potential application value of Astilbin.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Acetilación , Carpas/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Hepatocitos , Apoptosis , Adenosina Trifosfato/metabolismo
19.
Fish Shellfish Immunol ; 137: 108772, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100311

RESUMEN

Glyphosate is an herbicide commonly used worldwide, and its substantial use causes widespread pollution with runoff. However, research on glyphosate toxicity has mostly remained at the embryonic level and existing studies are limited. In the present study, we investigated whether glyphosate can induce autophagy in hepatic L8824 cells by regulating energy metabolism and rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling by activating nitric oxide (NO). First, we selected 0, 50, 200, and 500 µg/mL as the challenge doses, according to the inhibitory concentration of 50% (IC50) of glyphosate. The results showed that glyphosate exposure increased the enzyme activity of inducible nitric oxide synthase (iNOS), which in turn increased the NO content. The activity and expression of enzymes related to energy metabolism, such as hexokinase (HK)1, HK2, phosphofructokinase (PFK), phosphokinase (PK), succinate dehydrogenase (SDH), and nicotinamide adenine dinucleotide with hydrogen (NADH), were inhibited, and the RAS/RAF/MEK/ERK signaling pathway was activated. This led to the negative expression of mammalian target of rapamycin (mTOR) and P62 in hepatic L8824 cells and the activation of the autophagy marker genes microtubule-associated proteins light chain 3 (LC3) and Beclin1 to induce autophagy. The above results were dependent on glyphosate concentration. To verify whether autophagy can be excited by the RAS/RAF/MEK/ERK signaling pathway, we treated L8824 cells with the ERK inhibitor U0126 and found that the autophagy gene LC3 was reduced due to the inhibition of ERK, thus demonstrating the reliability of the results. In conclusion, our results demonstrate that glyphosate can induce autophagy in hepatic L8824 cells by activating NO, thus regulating energy metabolism and the RAS/RAF/MEK/ERK signaling pathway.


Asunto(s)
Fibrosarcoma , Quinasas Quinasa Quinasa PAM , Animales , Óxido Nítrico , Reproducibilidad de los Resultados , Quinasas raf/genética , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular , Línea Celular , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Metabolismo Energético , Autofagia , Sistema de Señalización de MAP Quinasas , Mamíferos/metabolismo , Glifosato
20.
Fish Shellfish Immunol ; 132: 108470, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470402

RESUMEN

Microplastics cause varying degrees of damage to aquatic organisms. Exposure to microplastics contaminated water, the gills are among the first tissues, after the skin, to be affected by microplastics. As an essential immune organ, prolonged stimulation by microplastics disrupts immune function not only in the gills but throughout the body, yet the underlying mechanisms remain elusive. A model of gill injury from exposure to polyethylene (PE) microplastics was developed in this study. H&E staining revealed that polyethylene microplastics caused gill inflammation, vascular remodeling, and mucous cell proliferation. An increase in collagen indicates severe tissue damage. Additional analysis showed that polyethylene microplastics profoundly exacerbated oxidative stress in the gills. TUNEL assay demonstrated cell apoptosis induced by polyethylene microplastic. The mRNA levels were subsequently quantified using RT-PCR. The results showed that polyethylene microplastics increased the expression of the nuclear factor-κB (NF-κB) pathway (NF-κB p65, IKKα, IKKß) and apoptosis biomarkers (p53, caspase-3, caspase-9, and Bax). Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasomes, which is an influential component of innate immunity, were overactive. What's more, the pro-inflammatory factors (TNF-α, IFN-γ, IL-2, IL-6, IL-8, IL-1ß) that induce immune disorder also increased significantly, while the anti-inflammatory factors (IL-4, IL-10) decreased significantly. These results suggested that oxidative stress acted as an activation signal of apoptosis triggered by the NF-κB pathway and activating the NLRP3 inflammasome to promote inflammatory immune responses. The present study provided a different target for the prevention of toxin-induced gill injury under polyethylene microplastics.


Asunto(s)
Carpas , Inflamasomas , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microplásticos/toxicidad , Plásticos , Branquias/metabolismo , Polietileno , Transducción de Señal , Carpas/metabolismo , Inflamación/inducido químicamente , Inflamación/veterinaria , Inflamación/metabolismo , Apoptosis , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA