Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38656846

RESUMEN

Multilabel feature selection solves the dimension distress of high-dimensional multilabel data by selecting the optimal subset of features. Noisy and incomplete labels of raw multilabel data hinder the acquisition of label-guided information. In existing approaches, mapping the label space to a low-dimensional latent space by semantic decomposition to mitigate label noise is considered an effective strategy. However, the decomposed latent label space contains redundant label information, which misleads the capture of potential label relevance. To eliminate the effect of redundant information on the extraction of latent label correlations, a novel method named SLOFS via shared latent sublabel structure and simultaneous orthogonal basis clustering for multilabel feature selection is proposed. First, a latent orthogonal base structure shared (LOBSS) term is engineered to guide the construction of a redundancy-free latent sublabel space via the separated latent clustering center structure. The LOBSS term simultaneously retains latent sublabel information and latent clustering center structure. Moreover, the structure and relevance information of nonredundant latent sublabels are fully explored. The introduction of graph regularization ensures structural consistency in the data space and latent sublabels, thus helping the feature selection process. SLOFS employs a dynamic sublabel graph to obtain a high-quality sublabel space and uses regularization to constrain label correlations on dynamic sublabel projections. Finally, an effective convergence provable optimization scheme is proposed to solve the SLOFS method. The experimental studies on the 18 datasets demonstrate that the presented method performs consistently better than previous feature selection methods.

2.
JMIR Mhealth Uhealth ; 12: e48842, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261368

RESUMEN

BACKGROUND: 5G technology is gaining traction in Chinese hospitals for its potential to enhance patient care and internal management. However, various barriers hinder its implementation in clinical settings, and studies on their relevance and importance are scarce. OBJECTIVE: This study aimed to identify critical barriers hampering the effective implementation of 5G in hospitals in Western China, to identify interaction relationships and priorities of the above-identified barriers, and to assess the intensity of the relationships and cause-and-effect relations between the adoption barriers. METHODS: This paper uses the Delphi expert consultation method to determine key barriers to 5G adoption in Western China hospitals, the interpretive structural modeling to uncover interaction relationships and priorities, and the decision-making trial and evaluation laboratory method to reveal cause-and-effect relationships and their intensity levels. RESULTS: In total, 14 barriers were determined by literature review and the Delphi method. Among these, "lack of policies on ethics, rights, and responsibilities in core health care scenarios" emerged as the fundamental influencing factor in the entire system, as it was the only factor at the bottom level of the interpretive structural model. Overall, 8 barriers were classified as the "cause group," and 6 as the "effect group" by the decision-making trial and evaluation laboratory method. "High expense" and "organizational barriers within hospitals" were determined as the most significant driving barrier (the highest R-C value of 1.361) and the most critical barrier (the highest R+C value of 4.317), respectively. CONCLUSIONS: Promoting the integration of 5G in hospitals in Western China faces multiple complex and interrelated barriers. The study provides valuable quantitative evidence and a comprehensive approach for regulatory authorities, hospitals, and telecom operators, helping them develop strategic pathways for promoting widespread 5G adoption in health care. It is suggested that the stakeholders cooperate to explore and solve the problems in the 5G medical care era, aiming to achieve the coverage of 5G medical care across the country. To our best knowledge, this study is the first academic exploration systematically analyzing factors resisting 5G integration in Chinese hospitals, and it may give subsequent researchers a solid foundation for further studying the application and development of 5G in health care.


Asunto(s)
Hospitales , Laboratorios , Humanos , China , Modelos Estructurales , Tecnología
3.
Med Image Anal ; 97: 103241, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38897032

RESUMEN

Although the U-shape networks have achieved remarkable performances in many medical image segmentation tasks, they rarely model the sequential relationship of hierarchical layers. This weakness makes it difficult for the current layer to effectively utilize the historical information of the previous layer, leading to unsatisfactory segmentation results for lesions with blurred boundaries and irregular shapes. To solve this problem, we propose a novel dual-path U-Net, dubbed I2U-Net. The newly proposed network encourages historical information re-usage and re-exploration through rich information interaction among the dual paths, allowing deep layers to learn more comprehensive features that contain both low-level detail description and high-level semantic abstraction. Specifically, we introduce a multi-functional information interaction module (MFII), which can model cross-path, cross-layer, and cross-path-and-layer information interactions via a unified design, making the proposed I2U-Net behave similarly to an unfolded RNN and enjoying its advantage of modeling time sequence information. Besides, to further selectively and sensitively integrate the information extracted by the encoder of the dual paths, we propose a holistic information fusion and augmentation module (HIFA), which can efficiently bridge the encoder and the decoder. Extensive experiments on four challenging tasks, including skin lesion, polyp, brain tumor, and abdominal multi-organ segmentation, consistently show that the proposed I2U-Net has superior performance and generalization ability over other state-of-the-art methods. The code is available at https://github.com/duweidai/I2U-Net.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA